Abstract The effect of nanoconfinement on the kinetics of benzyl methacrylate radical polymerization is investigated using differential scanning calorimetry. Controlled pore glass (CPG), ordered mesoporous carbons, and mesoporous silica are used as confinement media with pore sizes from 2 to 8 nm. The initial polymerization rate in CPG and mesoporous silica increases relative to the bulk and increases linearly with reciprocal pore size; whereas, the rate in the carbon mesopores decreases linearly with reciprocal pore size; the changes are consistent with the rate being related to the ratio of the pore surface area to pore volume. Induction times are longer for nanoconfined polymerizations, and in the case of CPG and carbon mesopores, autoacceleration occurs earlier, presumably due to the limited diffusivity and lower termination rates for the confined polymer chains. The molecular weight of the polymer synthesized in the nanopores is generally higher than that obtained in the bulk except at the lowest temperatures investigated. The equilibrium conversion under nanoconfinement decreases with decreasing temperature and with confinement size, exhibiting what appears to be a floor temperature at low temperatures.
more »
« less
Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III)
Confinement effects for the magnetoresponsive ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [C2mim]FeCl4, are explored from thermal, spectroscopic, and magnetic points of view. Placing the ionic liquid inside SBA-15 mesoporous silica produces a significant impact on the material’s response to temperature, pressure, and magnetic fields. Isobaric thermal experiments show melting point reductions that depend on the pore diameter of the mesopores. The confinement-induced reductions in phase transition temperature follow the Gibbs–Thomson equation if a 1.60 nm non-freezable interfacial layer is postulated to exist along the pore wall. Isothermal pressure-dependent infrared spectroscopy reveals a similar modification to phase transition pressures, with the confined ionic liquid requiring higher pressures to trigger phase transformation than the unconfined system. Confinement also impedes ion transport as activation energies are elevated when the ionic liquid is placed inside the mesopores. Finally, the antiferromagnetic ordering that characterizes unconfined [C2mim]FeCl4 is suppressed when the ionic liquid is confined in 5.39-nm pores. Thus, confinement provides another avenue for manipulating the magnetic properties of this compound.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10411495
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 27
- Issue:
- 17
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 5591
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Electrical magnetoresistance and tunnel diode oscillator measurements were performed under external magnetic fields up to 41 T applied along the crystallographic b axis (hard axis) of UTe 2 as a function of temperature and applied pressures up to 18.8 kbar. In this work, we track the field-induced first-order transition between superconducting and magnetic field-polarized phases as a function of applied pressure, showing suppression of the transition with increasing pressure until the demise of superconductivity near 16 kbar and the appearance of a pressure-induced ferromagnetic-like ground state that is distinct from the field-polarized phase and stable at zero field. Together with evidence for the evolution of a second superconducting phase and its upper critical field with pressure, we examine the confinement of superconductivity by two orthogonal magnetic phases and the implications for understanding the boundaries of triplet superconductivity.more » « less
-
null (Ed.)An original methodology is suggested for evaluating the pore size distribution in carbons in the wide range of micro- and mesopores from 0.385 to 10 nm from a single isotherm of high-pressure adsorption of CO2 at 273 K. The proposed method is based on the reference theoretical isotherms calculated by Monte Carlo simulations in model pores of slit and cylindrical geometry. The relationship between the pore size and the pore filling pressure is established. Special attention is given to predicting of the capillary condensation transitions in mesopores by using the meso-canonical ensemble (gauge cell) Monte Carlo simulations. The proposed technique is demonstrated and verified against the conventional N2 and Ar low temperature adsorption methods drawing on the example of micro-mesoporous carbons of the CMK family. Advantages and limitations of CO2 adsorption characterization of nanoporous materials are discussed and further improvements are proposed.more » « less
-
Abstract Two‐dimensional MFI zeolite nanosheets contain Brønsted acid sites partially confined at the intercept between micro‐ and mesopores. These acid sites exhibit exceptional reactivities and stabilities for C=C bond coupling and ring‐closure reactions that transform light aldehydes to aromatics. These sites are much more effective than those confined within the micropores of MFI crystallites and those unconfined on H4SiW12O40clusters or mesoporous aluminosilicate Al‐MCM‐41. The partially confined site environment solvates and stabilizes the transition states of the kinetically relevant steps during aromatization.more » « less
-
In this study, phase transitions (structural and magnetic) and associated magnetocaloric properties of stoichiometric MnCoGe have been investigated as a function of annealing pressure. Metastable phases were generated by annealing at 800 °C followed by rapid cooling under pressures up to 6.0 GPa. The x-ray diffraction results reveal that the crystal cell volume of the metastable phases continuously decreases with increasing thermal processing pressure, leading to a decrease in the structural transition temperature. The magnetic and structural transitions merge and form a first-order magnetostructural transition between the ferromagnetic orthorhombic and paramagnetic hexagonal phases over a broad temperature range (>80 K) spanning room temperature, yielding considerable magnetic entropy changes. These findings demonstrate the utility of thermal processing under high pressure, i.e., high-pressure annealing, to control the magnetostructural transitions and associated magnetocaloric properties of MnCoGe without altering its chemical composition.more » « less
An official website of the United States government

