skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural and electronic properties of NbN/GaN junctions grown by molecular beam epitaxy
We report the structural and electronic properties of NbN/GaN junctions grown by plasma-assisted molecular beam epitaxy. High crystal-quality NbN films grown on GaN exhibit superconducting critical temperatures in excess of 10 K for thicknesses as low as 3 nm. We observe that the NbN lattice adopts the stacking sequence of the underlying GaN and that domain boundaries in the NbN thereby occur at the site of atomic steps in the GaN surface. The electronic properties of the NbN/GaN junction are characterized using Schottky barrier diodes. Current–voltage–temperature and capacitance–voltage measurements are used to determine the Schottky barrier height of the NbN/GaN junction, which we conclude is ∼1.3 eV.  more » « less
Award ID(s):
1719875
PAR ID:
10411699
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
5
ISSN:
2166-532X
Page Range / eLocation ID:
051103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role. 
    more » « less
  2. Abstract We investigate the electrical characteristics of Ni Schottky contacts on n-type GaN films that have undergone ultra-high-pressure annealing (UHPA), a key processing step for activating implanted Mg. Contacts deposited on these films exhibit low rectification and high leakage current compared to contacts on as-grown films. By employing an optimized surface treatment to restore the GaN surface following UHPA, we obtain Schottky contacts with a high rectification ratio of ∼109, a near-unity ideality factor of 1.03, and a barrier height of ∼0.9 eV. These characteristics enable the development of GaN junction barrier Schottky diodes employing Mg implantation and UHPA. 
    more » « less
  3. Abstract We report a kV class, low ON-resistance, vertical GaN junction barrier Schottky (JBS) diode with selective-area p-regions formed via Mg implantation followed by high-temperature, ultra-high pressure (UHP) post-implantation activation anneal. The JBS has an ideality factor of 1.03, a turn-on voltage of 0.75 V, and a specific differential ON-resistance of 0.6 mΩ·cm 2 . The breakdown voltage of the JBS diode is 915 V, corresponding to a maximum electric field of 3.3 MV cm −1 . These results underline that high-performance GaN JBS can be realized using Mg implantation and high-temperature UHP post-activation anneal. 
    more » « less
  4. Medium-voltage (MV) power electronic devices are widely used in renewable energy processing, electric grids, pulse power systems, etc. Current MV devices are mainly made of Si and SiC. This paper presents our recent efforts in developing a new generation of MV devices based on the multi-channel AlGaN/GaN platform and many new device designs involving charge balance, fin, and Cascode. The specific on-resistance of our 10 kV-class GaN Schottky barrier diodes and normally-OFF transistors is ~40 mΩ•cm 2 , rendering a Baliga’s figure of merit exceeding the 1-D unipolar SiC limits. We show the great promise of GaN in medium and high-voltage power applications. 
    more » « less
  5. Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes. 
    more » « less