Abstract Nocturnal hypoglycemia is a common phenomenon among patients with diabetes and can lead to a broad range of adverse events and complications. Identifying factors associated with hypoglycemia can improve glucose control and patient care. We propose a repeated measures random forest (RMRF) algorithm that can handle nonlinear relationships and interactions and the correlated responses from patients evaluated over several nights. Simulation results show that our proposed algorithm captures the informative variable more often than naïvely assuming independence. RMRF also outperforms standard random forest and extremely randomized trees algorithms. We demonstrate scenarios where RMRF attains greater prediction accuracy than generalized linear models. We apply the RMRF algorithm to analyze a diabetes study with 2524 nights from 127 patients with type 1 diabetes. We find that nocturnal hypoglycemia is associated with HbA1c, bedtime blood glucose (BG), insulin on board, time system activated, exercise intensity, and daytime hypoglycemia. The RMRF can accurately classify nights at high risk of nocturnal hypoglycemia.
more »
« less
Design and Validation of an Open-Source Closed-Loop Testbed for Artificial Pancreas Systems
The development of fully autonomous artificial pancreas systems (APS) that independently regulate the glucose levels of patients with Type 1 diabetes has been a long-standing goal of diabetes research. A significant barrier to progress is the difficulty of testing new control algorithms and safety features, since clinical trials are time- and resource-intensive. To facilitate ease of validation, we propose an open-source APS testbed that can integrate state-of-the-art APS controllers and glucose simulators with a novel fault injection engine. The testbed is used to reproduce the blood glucose trajectories of real patients from a clinical trial conducted over six months. We evaluate the performance of two closed-loop control algorithms (OpenAPS and Basal Bolus) using the testbed and find that these control algorithms are able to keep blood glucose in a safe region 93.49% and 79.46% of the time on average, compared with 66.18% of the time for the clinical trial. The fault injection engine simulates the real recalls and adverse events reported to the U.S. Food and Drug Administration (FDA) and demonstrates the resilience of the controller in hazardous conditions. We use the testbed to generate 2.5 years of synthetic data representing 20 different patient profiles with realistic adverse event scenarios, which would have been expensive and risky to collect in a clinical trial.
more »
« less
- PAR ID:
- 10411985
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2022 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
- ISSN:
- 2832-2975
- ISBN:
- 978-1-4503-9476-5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background Evidence to guide type 2 diabetes treatment individualization is limited. We evaluated heterogeneous treatment effects (HTE) of intensive glycemic control in type 2 diabetes patients on major adverse cardiovascular events (MACE) in the Action to Control Cardiovascular Risk in Diabetes Study (ACCORD) and the Veterans Affairs Diabetes Trial (VADT). Methods Causal forests machine learning analysis was performed using pooled individual data from two randomized trials (n = 12,042) to identify HTE of intensive versus standard glycemic control on MACE in patients with type 2 diabetes. We used variable prioritization from causal forests to build a summary decision tree and examined the risk difference of MACE between treatment arms in the resulting subgroups. Results A summary decision tree used five variables (hemoglobin glycation index, estimated glomerular filtration rate, fasting glucose, age, and body mass index) to define eight subgroups in which risk differences of MACE ranged from − 5.1% (95% CI − 8.7, − 1.5) to 3.1% (95% CI 0.2, 6.0) (negative values represent lower MACE associated with intensive glycemic control). Intensive glycemic control was associated with lower MACE in pooled study data in subgroups with low (− 4.2% [95% CI − 8.1, − 1.0]), intermediate (− 5.1% [95% CI − 8.7, − 1.5]), and high (− 4.3% [95% CI − 7.7, − 1.0]) MACE rates with consistent directions of effect in ACCORD and VADT alone. Conclusions This data-driven analysis provides evidence supporting the diabetes treatment guideline recommendation of intensive glucose lowering in diabetes patients with low cardiovascular risk and additionally suggests potential benefits of intensive glycemic control in some individuals at higher cardiovascular risk.more » « less
-
Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9 months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic control decreases significantly around the holidays, with the largest decline observed on New Year’s Day among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August (i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve diabetes outcomes.more » « less
-
Abstract Diabetes is one of the most pressing healthcare challenges facing society. Dysfunctional insulin signaling causes diabetes, leading to blood glucose instability and many associated complications. While the administration of exogenous insulin is then essential for achieving glucose control, issues with dosing accuracy and timing remain. Hydrogel‐based drug delivery systems have been broadly explored for controlled protein release, including for applications in long‐lasting and oral insulin delivery. More recently, efforts have focused on injectable hydrogels with glucose‐directed controlled release of insulin and glucagon, aiming for more autonomous and biomimetic approaches to blood glucose control. These materials typically use protein‐based sensing mechanisms or glucose binding by synthetic aryl boronates for glucose‐directed release. Despite advancements in this area, there remains a need for more precise timing of therapeutic availability to afford healthy blood glucose homeostasis, providing an opportunity for further research and innovation. This review summarizes the current state of hydrogel‐based delivery of insulin and glucagon, with insights into the potential benefits, future directions, and challenges that must be overcome to achieve clinical impact.more » « less
-
The management of blood glucose levels is critical in the care of Type 1 diabetes subjects. In extremes, high or low levels of blood glucose are fatal. To avoid such adverse events, there is the development and adoption of wearable technologies that continuously monitor blood glucose and administer insulin. This technology allows subjects to easily track their blood glucose levels with early intervention without the need for hospital visits. The data collected from these sensors is an excellent candidate for the application of machine learning algorithms to learn patterns and predict future values of blood glucose levels. In this study, we developed artificial neural network algorithms based on the OhioT1DM training dataset that contains data on 12 subjects. The dataset contains features such as subject identifiers, continuous glucose monitoring data obtained in 5 minutes intervals, insulin infusion rate, etc. We developed individual models, including LSTM, BiLSTM, Convolutional LSTMs, TCN, and sequence-to-sequence models. We also developed transfer learning models based on the most important features of the data, as identified by a gradient boosting algorithm. These models were evaluated on the OhioT1DM test dataset that contains 6 unique subject’s data. The model with the lowest RMSE values for the 30- and 60-minutes was selected as the best performing model. Our result shows that sequence-to-sequence BiLSTM performed better than the other models. This work demonstrates the potential of artificial neural networks algorithms in the management of Type 1 diabetes.more » « less
An official website of the United States government

