Abstract Extreme weather-related events are showing how infrastructure disruptions in hinterlands can affect cities. This paper explores the risks to city infrastructure services including transportation, electricity, communication, fuel supply, water distribution, stormwater drainage, and food supply from hinterland hazards of fire, precipitation, post-fire debris flow, smoke, and flooding. There is a large and growing body of research that describes the vulnerabilities of infrastructures to climate hazards, yet this work has not systematically acknowledged the relationships and cross-governance challenges of protecting cities from remote disruptions. An evidence base is developed through a structured literature review that identifies city infrastructure vulnerabilities to hinterland hazards. Findings highlight diverse pathways from the initial hazard to the final impact on an infrastructure, demonstrating that impacts to hinterland infrastructure assets from hazards can cascade to city infrastructure. Beyond the value of describing the impact of hinterland hazards on urban infrastructure, the identified pathways can assist in informing cross-governance mitigation strategies. It may be the case that to protect cities, local governments invest in mitigating hazards in their hinterlands and supply chains. 
                        more » 
                        « less   
                    
                            
                            Integrated assessment of urban water supply security and resilience: towards a streamlined approach
                        
                    
    
            Abstract Urbanization and competing water demand, as well as rising temperatures and changing weather patterns, are manifesting as gradual processes that increasingly challenge urban water supply security. Cities are also threatened by acute risks arising at the intersection of aging infrastructure, entrenched institutions, and the increasing occurrence of extreme weather events. To better understand these multi-layered, interacting challenges of providing urban water supply for all, while being prepared to deal with recurring shocks, we present an integrated analysis of water supply security in New York City and its resilience to acute shocks and chronic disturbances. We apply a revised version of a recently developed, quantitative framework (‘Capital Portfolio Approach’, CPA) that takes a social-ecological-technological systems perspective to assess urban water supply security as the performance of water services at the household scale. Using the parameters of the CPA as input, we use a coupled systems dynamics model to investigate the dynamics of services in response to shocks—under current conditions and in a scenario of increasing shock occurrence and a loss of system robustness. We find water supply security to be high and current response to shocks to be resilient thanks to past shock experiences. However, we identify a number of risks and vulnerability issues that, if unaddressed, might significantly impact the city’s water services in the mid-term future. Our findings have relevance to cities around the world, and raise questions for research about how security and resilience can and should be maintained in the future. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10465494
- Publisher / Repository:
- Environmental Research Letters
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 17
- Issue:
- 7
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 075006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks.more » « less
- 
            Abstract Global food systems must be a part of strategies for greenhouse gas (GHG) mitigation, optimal water use, and nitrogen pollution reduction. Insights from research in these areas can inform policies to build sustainable food systems yet limited work has been done to build understanding around whether or not sustainability efforts compete with supply chain resilience. This study explores the interplay between food supply resilience and environmental impacts in US cities, within the context of global food systems’ contributions to GHG emissions, water use, and nitrogen pollution. Utilizing county-level agricultural data, we assess the water use, GHG emissions, and nitrogen losses of urban food systems across the US, and juxtapose these against food supply resilience, represented by supply chain diversity. Our results highlight that supply chain resilience and sustainability can simultaneously exist and are not necessarily in competition with each other. We also found a significant per capita footprint in the environmental domains across Southern cities, specifically those along the Gulf Coast and southern Great Plains. Food supply chain resilience scores ranged from 0.18 to 0.69, with lower scores in the southwest and Great Plains, while northeastern and Midwestern regions demonstrated higher resilience. We found several cities with high supply chain resilience and moderate or low environmental impacts as well as areas with high impacts and low resilience. This study provides insights into potential trade-offs and opportunities for creating sustainable urban food systems in the US, underscoring the need for strategies that consider both resilience and environmental implications.more » « less
- 
            Mapping supply of and demand for ecosystem services to assess environmental justice in New York Citynull (Ed.)Livability, resilience, and justice in cities are challenged by climate change and the historical legacies that together create disproportionate impacts on human communities. Urban green infrastructure has emerged as an important tool for climate change adaptation and resilience given their capacity to provide ecosystem services such as local temperature regulation, stormwater mitigation, and air purification. However, realizing the benefits of ecosystem services for climate adaptation depend on where they are locally supplied. Few studies have examined the potential spatial mismatches in supply and demand of urban ecosystem services, and even fewer have examined supply–demand mismatches as a potential environmental justice issue, such as when supply–demand mismatches disproportionately overlap with certain socio-demographic groups. We spatially analyzed demand for ecosystem services relevant for climate change adaptation and combined results with recent analysis of the supply of ecosystem services in New York City (NYC). By quantifying the relative mismatch between supply and demand of ecosystem services across the city we were able to identify spatial hot- and coldspots of supply–demand mismatch. Hotspots are spatial clusters of census blocks with a higher mismatch and coldspots are clusters with lower mismatch values than their surrounding blocks. The distribution of mismatch hot- and coldspots was then compared to the spatial distribution of socio-demographic groups. Results reveal distributional environmental injustice of access to the climate-regulating benefits of ecosystem services provided by urban green infrastructure in NYC. Analyses show that areas with lower supply–demand mismatch tend to be populated by a larger proportion of white residents with higher median incomes, and areas with high mismatch values have lower incomes and a higher proportion of people of color. We suggest that urban policy and planning should ensure that investments in “nature-based” solutions such as through urban green infrastructure for climate change adaptation do not reinforce or exacerbate potentially existing environmental injustices.more » « less
- 
            Abstract Interplanetary (IP) shocks are perturbations observed in the solar wind. IP shocks correlate well with solar activity, being more numerous during times of high sunspot numbers. Earth‐bound IP shocks cause many space weather effects that are promptly observed in geospace and on the ground. Such effects can pose considerable threats to human assets in space and on the ground, including satellites in the upper atmosphere and power infrastructure. Thus, it is of great interest to the space weather community to (a) keep an accurate catalog of shocks observed near Earth, and (b) be able to forecast shock occurrence as a function of the solar cycle (SC). In this work, we use a supervised machine learning regression model to predict the number of shocks expected in SC25 using three previously published sunspot predictions for the same cycle. We predict shock counts to be around 275 ± 10, which is ∼47% higher than the shock occurrence in SC24 (187 ± 8), but still smaller than the shock occurrence in SC23 (343 ± 12). With the perspective of having more IP shocks on the horizon for SC25, we briefly discuss many opportunities in space weather research for the remainder years of SC25. The next decade or so will bring unprecedented opportunities for research and forecasting effects in the solar wind, magnetosphere, ionosphere, and on the ground. As a result, we predict SC25 will offer excellent opportunities for shock occurrences and data availability for conducting space weather research and forecasting.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
