skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PhyloCoalSimulations: A Simulator for Network Multispecies Coalescent Models, Including a New Extension for the Inheritance of Gene Flow
Abstract We consider the evolution of phylogenetic gene trees along phylogenetic species networks, according to the network multispecies coalescent process, and introduce a new network coalescent model with correlated inheritance of gene flow. This model generalizes two traditional versions of the network coalescent: with independent or common inheritance. At each reticulation, multiple lineages of a given locus are inherited from parental populations chosen at random, either independently across lineages or with positive correlation according to a Dirichlet process. This process may account for locus-specific probabilities of inheritance, for example. We implemented the simulation of gene trees under these network coalescent models in the Julia package PhyloCoalSimulations, which depends on PhyloNetworks and its powerful network manipulation tools. Input species phylogenies can be read in extended Newick format, either in numbers of generations or in coalescent units. Simulated gene trees can be written in Newick format, and in a way that preserves information about their embedding within the species network. This embedding can be used for downstream purposes, such as to simulate species-specific processes like rate variation across species, or for other scenarios as illustrated in this note. This package should be useful for simulation studies and simulation-based inference methods. The software is available open source with documentation and a tutorial at https://github.com/cecileane/PhyloCoalSimulations.jl.  more » « less
Award ID(s):
2051760 2023239 1902892
PAR ID:
10472869
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Systematic Biology
Volume:
72
Issue:
5
ISSN:
1063-5157
Format(s):
Medium: X Size: p. 1171-1179
Size(s):
p. 1171-1179
Sponsoring Org:
National Science Foundation
More Like this
  1. Satta, Yoko (Ed.)
    Abstract Likelihood-based tests of phylogenetic trees are a foundation of modern systematics. Over the past decade, an enormous wealth and diversity of model-based approaches have been developed for phylogenetic inference of both gene trees and species trees. However, while many techniques exist for conducting formal likelihood-based tests of gene trees, such frameworks are comparatively underdeveloped and underutilized for testing species tree hypotheses. To date, widely used tests of tree topology are designed to assess the fit of classical models of molecular sequence data and individual gene trees and thus are not readily applicable to the problem of species tree inference. To address this issue, we derive several analogous likelihood-based approaches for testing topologies using modern species tree models and heuristic algorithms that use gene tree topologies as input for maximum likelihood estimation under the multispecies coalescent. For the purpose of comparing support for species trees, these tests leverage the statistical procedures of their original gene tree-based counterparts that have an extended history for testing phylogenetic hypotheses at a single locus. We discuss and demonstrate a number of applications, limitations, and important considerations of these tests using simulated and empirical phylogenomic data sets that include both bifurcating topologies and reticulate network models of species relationships. Finally, we introduce the open-source R package SpeciesTopoTestR (SpeciesTopology Tests in R) that includes a suite of functions for conducting formal likelihood-based tests of species topologies given a set of input gene tree topologies. 
    more » « less
  2. Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes all incongruence among loci is caused by incomplete lineage sorting. Therefore, applying the MSCM to datasets that contain incongruence that is caused by other processes, such as gene flow, can lead to biased phylogeny estimates. To identify possible bias when using the MSCM, we present P2C2M.SNAPP. P2C2M.SNAPP is an R package that identifies model violations using posterior predictive simulation. P2C2M.SNAPP uses the posterior distribution of species trees output by the software package SNAPP to simulate posterior predictive datasets under the MSCM, and then uses summary statistics to compare either the empirical data or the posterior distribution to the posterior predictive distribution to identify model violations. In simulation testing, P2C2M.SNAPP correctly classified up to 83% of datasets (depending on the summary statistic used) as to whether or not they violated the MSCM model. P2C2M.SNAPP represents a user-friendly way for researchers to perform posterior predictive model checks when using the popular SNAPP phylogenetic estimation program. It is freely available as an R package, along with additional program details and tutorials. 
    more » « less
  3. Abstract— Like many fern lineages comprising reticulate species complexes, Polypodium s.s. (Polypodiacaeae) has a history shaped by rapid diversification, hybridization, and polyploidy that poses substantial challenges for phylogenetic inference with plastid and single-locus nuclear markers. Using target capture probes for 408 nuclear loci developed by the GoFlag project and a custom bioinformatic pipeline, SORTER, we constructed multi-locus nuclear datasets for diploid temperate and Mesoamerican species of Polypodium and five allotetraploid species belonging to the well-studied Polypodium vulgare complex. SORTER employs a clustering approach to separate putatively paralogous copies of targeted loci into orthologous matrices and haplotype phasing to infer allopolyploid haplotypes across loci, resulting in datasets amenable to both concatenated maximum likelihood and multi-species coalescent phylogenetic analyses. By comparing phylogenies derived from maximum likelihood and multi-species coalescent analyses of unphased and phased datasets, as well as evaluating discordance among gene trees and species trees, we recover support for incomplete lineage sorting within Polypodium s.s., novel relationships among diploid taxa of the Polypodium vulgare complex and its Mesoamerican sister clade, and the placement of several Polypodium species within other genera. Additionally, we were able to infer well-supported phylogenies that identified the hypothesized progenitors of the allotetraploid species, indicating that SORTER is an effective and accurate tool for reconstructing homeolog haplotypes of allopolyploids in fern taxa and other non-model organisms from target capture data. 
    more » « less
  4. Kubatko, Laura (Ed.)
    Abstract Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.] 
    more » « less
  5. Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context. 
    more » « less