Shallow coastal ecosystems are threatened by marine heatwaves, but few long-term records exist to quantify these heatwaves. Here, 40-year records of measured water temperature were constructed for a site in a system of shallow bays with documented heatwave impacts and a nearby ocean site; available gridded sea-surface temperature datasets in the region were also examined. Water temperatures at both sites increased significantly though bay temperatures were consistently 3-4°C hotter in summer and colder in winter and were more variable overall, differences not captured in high-resolution gridded sea-surface temperature datasets. There was considerable overlap in heatwave events at the coastal bay and ocean sites. Annual heatwave exposure was similar and significantly increased at both sites while annual heatwave intensity was significantly higher at the bay site owing to the high variance of the daily temperature anomaly there. Event frequency at both sites increased at a rate of about 1 event/decade. Future simulations indicate all heatwave metrics increase, as do days above 28°C, a heat stress threshold for seagrass. Ocean temperatures on the U.S. mid-Atlantic margin have rarely exceeded this threshold, while summer bay temperatures commonly do, allowing ocean exchange with coastal bays to provide thermal relief to bay ecosystems. This will have changed by 2100, creating a thermal environment that threatens seagrass communities in these systems. Documenting such change requires development of long-term water temperature records in more shallow coastal systems.
more »
« less
Increased Frequency of Sediment Heatwaves in a Virginia Seagrass Meadow
Coastal marine heatwaves have destructive and lasting impacts on foundational species 13 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are 14 often associated with marine heatwaves (MHW) which are defined as 5-days of water 15 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the 16 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW). 17 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was 18 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow 19 edge and central meadow interior. The observed sediment temperature, along with a 29-year 20 record of water temperature and water level was used to develop a sediment temperature model 21 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that 22 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave 23 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding 24 with a 172% increase in the annual number of SHW days, from 11 to 30 days year-1 between 25 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of 26 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and 27 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In 28 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated 29 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to 30 the observed seagrass loss. These results document heatwave propagation across the pelagic-31 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal 32 ecosystem processes and species dynamics.
more »
« less
- Award ID(s):
- 1832221
- PAR ID:
- 10480586
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Estuaries and Coasts
- ISSN:
- 1559-2723
- Subject(s) / Keyword(s):
- Seagrass water temperature
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Marine heatwaves (MHWs) are increasing in frequency and intensity globally and are among the greatest threats to marine ecosystems. However, limited studies have characterized subsurface MHWs, particularly in shallow waters. We utilized nearly two decades of full water-column (~ 10 m) observations from a unique automated profiler in central California to characterize, for the first time, the vertical structure of MHWs in a shallow nearshore upwelling system. We found MHWs have similar average durations and intensities across all depths, but there were ~ 17% more bottom MHW days than surface MHW days. Nearly one third of bottom MHWs occurred independently of surface MHWs, indicating that satellites miss a significant fraction of events. MHWs showed distinct seasonality with more frequent and intense events during the fall/winter when weak stratification allowed for MHWs to occupy a larger portion of the water column and persist longer. During summer, strong stratification limited the vertical extent of MHWs, leading to surface- and bottom-trapped events with shorter durations and intensities. Additionally, MHW initiation and termination across depths was consistently linked to anomalously low and high coastal upwelling, respectively. This study highlights the need for expansion of subsurface monitoring of MHWs globally amid a warming planet.more » « less
-
null (Ed.)Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadow to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years. Overall, sites with higher seagrass recovery maintained 1.7x as much C compared to sites with lower recovery. Our study demonstrates that while seagrass blue C is vulnerable to MHWs, localization of seagrass loss can prevent meadow-wide C losses. Long-term (decadal and beyond) stability of seagrass blue C depends on seagrass resilience to short-term disturbance events.more » « less
-
ABSTRACT Marine heatwaves (MHWs) caused by multiple phenomena with days to months duration are increasingly common disturbances in ocean ecosystems. We investigated the impacts of MHWs on pelagic communities using spatially resolved time‐series of multiple trophic levels from the Southern California Current Ecosystem. Indices of phytoplankton biomass mostly declined during MHWs because of reduced nutrient supply (exceptingProchlorococcus) and were generally more sensitive to marine heatwave intensity than duration. By contrast, mesozooplankton (as estimated by zooplankton displacement volume) were somewhat more strongly correlated with MHW duration than intensity. Zooplankton anomalies were also positively correlated with fucoxanthin (diatom) anomalies, highlighting possible bottom‐up influences during MHWs. Mobile consumers (forage fish) showed more complex responses, with fish egg abundance declining during MHWs but not correlating with any MHW characteristics. Our findings provide partial evidence of how MHW characteristics can shape variable ecological responses due to the differing life spans and behaviours of different trophic levels.more » « less
-
Abstract Marine heatwaves (MHWs) are projected to increase in intensity and frequency over the coming decades, and it is imperative to assess the adaptive capacity of marine organisms to these extreme temperature events. Given the nature of MHWs to last days to weeks in a region, these events may have overarching impacts on phenological events like reproduction and development. Here, the role of adult thermal history and transgenerational plasticity may be an important pathway by which MHWs are transduced to impact community structure. In this study, we sought to explore the effects of paternal thermal history in the purple urchin,Strongylocentrotus purpuratus, on a crucial aspect of reproduction, fertilization. Using ecologically relevant temperatures representative of both MHW events that occurred in 2014–2020 and non-MHW temperatures in our region of the California Large Marine Ecosystem, we conditioned maleS. purpuratusfor 28 days to either a high, MHW or a low, non-MHW temperature. Following the temperature acclimation of adults, sperm performance was tested for individual males by conducting fertilization success trials at varying temperatures and sperm concentrations. While sperm appeared robust to elevated temperature during fertilization, sperm produced by high-temperature-acclimated males had overall diminished performance as compared to those acclimated to non-MHW temperatures. These results suggest MHW events will have a negative impact on fertilization in situ forS. purpuratuspopulations. Furthermore, these results highlight the importance of considering both male and female environmental history in projections of reproduction under climate change scenarios.more » « less
An official website of the United States government

