skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable magnetic confinement effect in a magnetic superlattice of graphene
Abstract Two-dimensional van der Waals materials such as graphene present an opportunity for band structure engineering using custom superlattice potentials. In this study, we demonstrate how self-assemblies of magnetic iron-oxide (Fe3O4) nanospheres stacked on monolayer graphene generate a proximity-induced magnetic superlattice in graphene and modify its band structure. Interactions between the nanospheres and the graphene layer generate superlattice Dirac points in addition to a gapped energy spectrum near the K and K′ valleys, resulting in magnetic confinement of quasiparticles around the nanospheres. This is evidenced by gate-dependent resistance oscillations, observed in our low temperature transport measurements, and confirmed by self-consistent tight binding calculations. Furthermore, we show that an external magnetic field can tune the magnetic superlattice potential created by the nanospheres, and thus the transport characteristics of the system. This technique for magnetic-field-tuned band structure engineering using magnetic nanostructures can be extended to a broader class of 2D van der Waals and topological materials.  more » « less
Award ID(s):
1720633 2309037
PAR ID:
10500081
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj 2D Materials and Applications
Volume:
8
Issue:
1
ISSN:
2397-7132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K. 
    more » « less
  2. Abstract We report the results of polarization‐dependent Raman spectroscopy of phonon states in single‐crystalline quasi‐one‐dimensional NbTe4and TaTe4van der Waals materials. The measurements were conducted in the wide temperature range from 80 to 560 K. Our results show that although both materials have identical crystal structures and symmetries, there is a drastic difference in the intensity of their Raman spectra. While TaTe4exhibits well‐defined peaks through the examined wavenumber and temperature ranges, NbTe4reveals extremely weak Raman signatures. The measured spectral positions of the phonon peaks agree with the phonon band structure calculated using the density‐functional theory. We offer possible reasons for the intensity differences between the two van der Waals materials. Our results provide insights into the phonon properties of NbTe4and TaTe4van der Waals materials and indicate the potential of Raman spectroscopy for studying charge‐density‐wave quantum condensate phases. 
    more » « less
  3. Abstract Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices. 
    more » « less
  4. Van der Waals materials with long-range magnetic order show a range of correlated phenomena that could be of use in the development of optoelectronic and spintronic applications. Magnetically ordered van der Waals semiconductors with spin-polarized currents are, in particular, sensitive to external stimuli such as strain, electrostatic fields, magnetic fields and electromagnetic radiation. Their combination of two-dimensional magnetic order, semiconducting band structure and weak dielectric screening means that these materials could be used to create novel atomically thin opto-spintronic devices. Here we explore the development of van der Waals opto-spintronics. We examine the interplay between optical, magnetic and electronic excitations in van der Waals magnetic semiconductors, and explore the control of their magnetization via external stimuli. We consider fabrication and passivation strategies for the practical handling and design of opto-spintronic devices. We also explore potential opto-spintronic device architectures and applications, which include magnonics, quantum transduction, neuromorphic computing and non-volatile memory. 
    more » « less
  5. 2D materials have attracted broad attention from researchers for their unique electronic proper-ties, which may be been further enhanced by combining 2D layers into vertically stacked van der Waals heterostructures. Among the superlative properties of 2D systems, thermoelectric energy (TE) conversion promises to enable targeted energy conversion, localized thermal management, and thermal sensing. However, TE conversion efficiency remains limited by the inherent tradeoff between conductivity and thermopower. In this paper, we use first-principles calculation to study graphene-based van der Waals heterostructures (vdWHs) composed of graphene layers and hexagonal boron nitride (h-BN). We compute the electronic band structures of heterostructured systems using Quantum Espresso and their thermoelectric (TE) properties using BoltzTrap2. Our results have shown that stacking layers of these 2D materials opens a bandgap, increasing it with the number of h-BN interlayers, which significantly improves the power factor (PF). We predict a PF of ~1.0x10 11 W/K 2 .m.s for the vdWHs, nearly double compared to 5x10 10 W/K 2 .m.s that we obtained for single-layer graphene. This study gives important information on the effect of stacking layers of 2D materials and points toward new avenues to optimize the TE properties of vdWHs. 
    more » « less