skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new div-div-conforming symmetric tensor finite element space with applications to the biharmonic equation
A new H(divdiv)-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and C0 discontinuous Galerkin methods for the biharmonic equation are derived.  more » « less
Award ID(s):
2309785 2012465
PAR ID:
10510562
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Mathematics of Computation
ISSN:
0025-5718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods. 
    more » « less
  2. An H(div)-conforming finite element method for the Biot’s consolidation mo- del is developed, with displacements and fluid velocity approximated by elements from BDM_k space. The use of H(div)-conforming elements for flow variables ensures the local mass conservation. In the H(div)-conforming approximation of displacement, the tan- gential components are discretised in the interior penalty discontinuous Galerkin frame- work,and the normal components across the element interfaces are continuous. Having introduced a spatial discretisation, we develop a semi-discrete scheme and a fully dis- crete scheme,prove their unique solvability and establish optimal error estimates for each variable. 
    more » « less
  3. We hybridize the methods of finite element exterior calculus for the Hodge-Laplace problem on differential k-forms in ℝn. In the cases k=0 and k=n, we recover well-known primal and mixed hybrid methods for the scalar Poisson equation, while for 0 
    more » « less
  4. In this work, we review and describe our computational framework for solving multiphysics phase-field fracture problems in porous media. Therein, the following five coupled nonlinear physical models are addressed: displacements (geo-mechanics), a phase-field variable to indicate the fracture position, a pressure equation (to describe flow), a proppant concentration equation, and/or a saturation equation for two-phase fracture flow, and finally a finite element crack width problem. The overall coupled problem is solved with a staggered solution approach, known in subsurface modeling as the fixed-stress iteration. A main focus is on physics-based discretizations. Galerkin finite elements are employed for the displacement-phase-field system and the crack width problem. Enriched Galerkin formulations are used for the pressure equation. Further enrichments using entropy-vanishing viscosity are employed for the proppant and/or saturation equations. A robust and efficient quasi-monolithic semi-smooth Newton solver, local mesh adaptivity, and parallel implementations allow for competitive timings in terms of the computational cost. Our framework can treat two- and three-dimensional realistic field and laboratory examples. The resulting program is an in-house code named IPACS (Integrated Phase-field Advanced Crack Propagation Simulator) and is based on the finite element library deal.II. Representative numerical examples are included in this document. 
    more » « less
  5. Abstract In this paper we study the biharmonic equation with Navier boundary conditions in a polygonal domain. In particular, we propose a method that effectively decouples the fourth-order problem as a system of Poisson equations. Our method differs from the naive mixed method that leads to two Poisson problems but only applies to convex domains; our decomposition involves a third Poisson equation to confine the solution in the correct function space, and therefore can be used in both convex and nonconvex domains. A $C^0$ finite element algorithm is in turn proposed to solve the resulting system. In addition, we derive optimal error estimates for the numerical solution on both quasi-uniform meshes and graded meshes. Numerical test results are presented to justify the theoretical findings. 
    more » « less