Abstract Artificial intelligence (AI) can be used to improve performance across a wide range of Earth system prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life cycle. We highlight examples from a variety of Earth system prediction tasks of each category of bias.
more »
« less
Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science
Abstract Given the growing use of Artificial intelligence (AI) and machine learning (ML) methods across all aspects of environmental sciences, it is imperative that we initiate a discussion about the ethical and responsible use of AI. In fact, much can be learned from other domains where AI was introduced, often with the best of intentions, yet often led to unintended societal consequences, such as hard coding racial bias in the criminal justice system or increasing economic inequality through the financial system. A common misconception is that the environmental sciences are immune to such unintended consequences when AI is being used, as most data come from observations, and AI algorithms are based on mathematical formulas, which are often seen as objective. In this article, we argue the opposite can be the case. Using specific examples, we demonstrate many ways in which the use of AI can introduce similar consequences in the environmental sciences. This article will stimulate discussion and research efforts in this direction. As a community, we should avoid repeating any foreseeable mistakes made in other domains through the introduction of AI. In fact, with proper precautions, AI can be a great tool to helpreduceclimate and environmental injustice. We primarily focus on weather and climate examples but the conclusions apply broadly across the environmental sciences.
more »
« less
- Award ID(s):
- 2019758
- PAR ID:
- 10512824
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Environmental Data Science
- Volume:
- 1
- ISSN:
- 2634-4602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Artificial Intelligence applications are rapidly expanding across weather, climate, and natural hazards. AI can be used to assist with forecasting weather and climate risks, including forecasting both the chance that a hazard will occur and the negative impacts from it, which means AI can help protect lives, property, and livelihoods on a global scale in our changing climate. To ensure that we are achieving this goal, the AI must be developed to be trustworthy, which is a complex and multifaceted undertaking. We present our work from the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), where we are taking a convergence research approach. Our work deeply integrates across AI, environmental, and risk communication sciences. This involves collaboration with professional end-users to investigate how they assess the trustworthiness and usefulness of AI methods for forecasting natural hazards. In turn, we use this knowledge to develop AI that is more trustworthy. We discuss how and why end-users may trust or distrust AI methods for multiple natural hazards, including winter weather, tropical cyclones, severe storms, and coastal oceanography.more » « less
-
Abstract Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.more » « less
-
Abstract Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision‐makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain‐specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains.more » « less
-
This article presents an overview of the emerging themes in Autonomous Materials Discovery andManufacturing (AMDM). This interdisciplinary field is garnering a growing interest among the sci-entists and engineers in the materials and manufacturing domains as well as those in the ArtificialIntelligence (AI) and data sciences domains, and it offers immense research potential for the indus-trial systems engineering (ISE) and manufacturing fields. Although there are a few reviews relatedto this topic, they had focused exclusively on sequential experimentation techniques, AI/machinelearning applications, or materials synthesis processes. In contrast, this review treats AMDM as acyberphysical system, comprising an intelligent softwarebrainthat incorporates various computa-tional models and sequential experimentation strategies, and a hardwarebodythat integratesequipment platforms for materials synthesis with measurement and testing capabilities. Thisreview offers a balanced perspective of the software and the hardware components of an AMDMsystem, and discusses the current state-of-the-art and the emerging challenges at the nexus ofmanufacturing/materials sciences and AI/data sciences in this nascent, exciting areamore » « less
An official website of the United States government

