Abstract Manufacture and characterizations of perovskite-mica van der Waals epitaxy heterostructures are a critical step to realize the application of flexible devices. However, the fabrication and investigation of the van der Waals epitaxy architectures grown on mica substrates are mainly limited to (111)-oriented perovskite functional oxide thin films up to now and buffer layers are highly needed. In this work, we directly grew La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on mica substrates without using any buffer layer. By the characterizations of x-ray diffractometer and scanning transmission electron microscopy, we demonstrate the epitaxial growth of the (110)-oriented LSMO thin film on the mica substrate. The LSMO thin film grown on the mica substrate via van der Waals epitaxy adopts domain matching epitaxy instead of conventional lattice matching epitaxy. Two kinds of domain matching relationships between the LSMO thin film and mica substrate are sketched by Visualization for Electronic and STructural Analysis software and discussed. A decent ferromagnetism retains in the (110)-oriented LSMO thin film. Our work demonstrates a new pathway to fabricate (110)-oriented functional oxide thin films on flexible mica substrates directly.
more »
« less
Treatment and aging studies of GaAs(111)B substrates for van der Waals chalcogenide film growth
GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.
more »
« less
- PAR ID:
- 10541602
- Publisher / Repository:
- American Institute of Physics Publishing
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology B
- Volume:
- 42
- Issue:
- 3
- ISSN:
- 2166-2746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epitaxial growth, a crystallographically oriented growth induced by the chemical bonding between crystalline substrate and atomic building blocks, has been a key technique in the thin-film and heterostructure applications of semiconductors. However, the epitaxial growth technique is limited by different lattice mismatch and thermal expansion coefficients of dissimilar crystals. Two-dimensional (2D) materials with dangling bond-free van der Waals surfaces have been used as growth templates for the hetero-integration of highly mismatched materials. Moreover, the ultrathin nature of 2D materials also allows for remote epitaxial growth and confinement growth of quasi-2D materials via intercalation. Here, we review the hetero-dimensional growth on 2D substrates: van der Waals epitaxy (vdWE), quasi vdWE, and intercalation growth. We discuss the growth mechanism and fundamental challenges for vdWE on 2D substrates. We also examine emerging vdWE techniques that use epitaxial liftoff and confinement epitaxial growth in detail. Finally, we give a brief review of radiation effects in 2D materials and contrast the damage induced with their 3D counterparts.more » « less
-
Scanning tunneling microscopy shows that copper deposited at room temperature onto a freshly exfoliated MoS2 surface forms Cu(111) clusters with periodic preferred heights of 5, 8, and 11 atomic layers. These height intervals correlate with Fermi nesting regions along the necks of the bulk Cu Fermi surface, indicating a connection between physical and electronic structures. Density functional theory calculations of freestanding Cu(111) films support this as well, predicting a lower density of states at the Fermi level for these preferred heights. This is consistent with other noble metals deposited on MoS2 that exhibit electronic growth, in which the metal films self-assemble as nanostructures minimizing quantum electronic energies. Here, we have discovered that it is critical for the metal deposition to begin on a clean MoS2 surface. If copper is deposited onto an already Cu coated surface, even if the original film displays electronic growth, the resulting Cu film lacks quantization. Instead, the preferred heights of the Cu clusters simply increase linearly with the amount of Cu deposited upon the surface. We believe this is due to different bonding conditions during the initial stages of growth. Newly deposited copper would bond strongly to the already present copper clusters, rather than the weak bonding, which exists to the van der Waals terminated surface of MoS2. The stronger bonding with previously deposited clusters hinders additional Cu atoms from reaching their lowest quantum energy state. The interface characteristics of the van der Waals surface enable surface engineering of self-assembled structures to achieve different applications.more » « less
-
We report on the synthesis of self-intercalated Nb1+xSe2 thin films by molecular beam epitaxy. Nb1+xSe2 is a metal-rich phase of NbSe2 where additional Nb atoms populate the van der Waals gap. The grown thin films are studied as a function of the Se to Nb beam equivalence pressure ratio (BEPR). X-ray photoelectron spectroscopy and x-ray diffraction indicate that BEPRs of 5:1 and greater result in the growth of the Nb1+xSe2 phase and that the amount of intercalation is inversely proportional to the Se to Nb BEPR. Electrical resistivity measurements also show an inverse relationship between BEPR and resistivity in the grown Nb1+xSe2 thin films. A second Nb-Se compound with a stoichiometry of ∼1:1 was synthesized using a Se to Nb BEPR of 2:1; in contrast to the Nb1+xSe2 thin films, this compound did not show evidence of a layered structure.more » « less
-
The Pt-Te compositional phase diagram consists of at least three different compositional line phases (PtTe2, Pt3Te4, and Pt2Te2) that can be described as layered van der Waals materials. This presents challenges in controlling the composition of ultrathin Pt-telluride 2D materials by physical vapor deposition methods. Here we show by temperature programmed synchrotron photoemission spectroscopy that the different phases have varying thermal stability in vacuum. This enables the synthesis of these materials by preparation of PtTe2 films at low growth temperatures and subsequent vacuum annealing to ~ 350 ˚C for Pt3Te4, or ~400 ˚C for Pt2Te2. Such prepared phases are characterized by high resolution core level spectroscopy to provide reference spectra for these materials. Moreover, the chemical stability of these materials was tested by exposure to oxygen and air. Even after prolonged air exposure only the surface Te layer was modified by oxygen chemical bonds that caused a 3-eV shift to higher binding energy of the Te-3d core levels. However, these oxygen species could be desorbed by vacuum annealing at 280 ˚C and pristine Pt-telluride samples can be re-established. This shows the excellent chemical stability of these materials, important for practical applications.more » « less
An official website of the United States government

