skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-Wave Interaction Equations: Classical and Nonlocal
A discussion of three-wave interaction systems with rapidly decaying data is provided. Included are the classical and two nonlocal three-wave interaction systems. These three-wave equations are formulated from underlying compatible linear systems and are connected to a third order linear scattering problem. The inverse scattering transform (IST) is carried out in detail for all these three-wave interaction equations. This entails obtaining and analyzing the direct scattering problem, discrete eigenvalues, symmetries, the inverse scattering problem via Riemann--Hilbert methods, minimal scattering data, and time dependence. In addition, soliton solutions illustrating energy sharing mechanisms are also discussed. A crucial step in the analysis is the use of adjoint eigenfunctions which connects the third order scattering problem to key eigenfunctions that are analytic in the upper/lower half planes. The general compatible nonlinear wave system and its classical and nonlocal three-wave reductions are asymptotic limits of physically significant nonlinear equations, including water/gravity waves with surface tension.  more » « less
Award ID(s):
2005343
PAR ID:
10543310
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM Journal of Mathematical Analysis
Date Published:
Journal Name:
SIAM Journal on Mathematical Analysis
Edition / Version:
1
Volume:
55
Issue:
4
ISSN:
0036-1410
Page Range / eLocation ID:
4089 to 4139
Subject(s) / Keyword(s):
Inverse scattering transform, Riemann--Hilbert problems, three-wave systems, solitons
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  2. Abstract Nonlocal reverse space‐time Sine/Sinh‐Gordon type equations were recently introduced. They arise from a remarkably simple nonlocal reduction of the well‐known AKNS scattering problem, hence, they constitute an integrable evolution equations. Furthermore, the inverse scattering transform (IST) for rapidly decaying data was also constructed. In this paper, the IST for these novel nonlocal equations corresponding to nonzero boundary conditions (NZBCs) at infinity is presented. The NZBC problem is more complex due to the intricate branching structure of the associated linear eigenfunctions. Two cases are analyzed, which correspond to two different values of the phase at infinity. Special soliton solutions are discussed and explicit 1‐soliton and 2‐soliton solutions are found. Both spatially independent and spatially dependent boundary conditions are considered. 
    more » « less
  3. A fractional extension of the integrable Toda lattice with decaying data on the line is obtained. Completeness of squared eigenfunctions of a linear discrete real tridiagonal eigenvalue problem is derived. This completeness relation allows nonlinear evolution equations expressed in terms of operators to be written in terms of underlying squared eigenfunctions and is related to a discretization of the continuous Schrödinger equation. The methods are discrete counterparts of continuous ones recently used to find fractional integrable extensions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) equations. Inverse scattering transform (IST) methods are used to linearize and find explicit soliton solutions to the integrable fractional Toda (fToda) lattice equation. The methodology can also be used to find and solve fractional extensions of a Toda lattice hierarchy. 
    more » « less
  4. Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods. 
    more » « less
  5. Three wave resonant triad interactions in two space and one time dimensions form a well-known system of first-order quadratically nonlinear evolution equations that arise in many areas of physics. In deep water waves, they were first derived by Simmons in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975. Specifically, integrability was established by introducing a system of six wave interactions whose symmetry reduction leads to the well-known three wave equations. Here, it is shown that the six wave interaction and classical three wave equations satisfying triad resonance conditions in finite-depth gravity waves can be derived from the non-local integro-differential formulation of the free surface gravity wave equation with surface tension. These quadratically nonlinear six wave interaction equations and their reductions to the classical and non-local complex as well as real reverse space–time three wave interaction equations are integrable. Limits to infinite and shallow water depth are also discussed. 
    more » « less