We give a fully faithful integral model for simply connected finite complexes in terms of -ring spectra and the Nikolaus–Scholze Frobenius. The key technical input is the development of a homotopy coherent Frobenius action on a certain subcategory of -complete -rings for each prime . Using this, we show that the data of a simply connected finite complex is the data of its Spanier-Whitehead dual, as an -ring, together with a trivialization of the Frobenius action after completion at each prime. In producing the above Frobenius action, we explore two ideas which may be of independent interest. The first is a more general action of Frobenius in equivariant homotopy theory; we show that a version of Quillen’s -construction acts on the -category of -rings with “genuine equivariant multiplication,” which we call global algebras. The second is a “pre-group-completed” variant of algebraic -theory which we callpartial -theory. We develop the notion of partial -theory and give a computation of the partial -theory of up to -completion.
more »
« less
This content will become publicly available on October 1, 2025
Standard monomials and invariant theory of arc spaces II: Symplectic group
This is the second in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field , we construct a standard monomial basis for the arc space of the Pfaffian variety over . As an application, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the symplectic group.
more »
« less
- Award ID(s):
- 2001484
- PAR ID:
- 10558435
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Journal of Algebraic Geometry
- Volume:
- 33
- Issue:
- 4
- ISSN:
- 1056-3911
- Page Range / eLocation ID:
- 601 to 628
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that a compact Riemannian -manifold with strictly convex simply connected boundary and sectional curvature is isometric to a convex domain in a complete simply connected space of constant curvature , provided that on planes tangent to the boundary of . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for .more » « less
-
If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
Motivated by questions asked by Erdős, we prove that any set with positive upper density contains, for any , a sumset , where , …, are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of .more » « less
-
Let be a smooth Riemannian manifold, a smooth closed oriented submanifold of codimension higher than and an integral area-minimizing current in which bounds . We prove that the set of regular points of at the boundary is dense in . Prior to our theorem the existence of any regular point was not known, except for some special choice of and . As a corollary of our theorem we answer to a question in Almgren’sAlmgren’s big regularity paperfrom 2000 showing that, if is connected, then has at least one point of multiplicity , namely there is a neighborhood of the point where is a classical submanifold with boundary ; we generalize Almgren’s connectivity theorem showing that the support of is always connected if is connected; we conclude a structural result on when consists of more than one connected component, generalizing a previous theorem proved by Hardt and Simon in 1979 when and is -dimensional.more » « less