Abstract We demonstrate shear‐printed layered photonic films with vivid structural coloration from bio‐derived cellulose nanocrystals and highly aligned Ti3C2TxMXene nanoflakes. These ultrathin films (700–1500 nm) show high light transmittance above 40% in the visible range. In reflectance mode, however, the films appear vividly colored and iridescent due to the multiple distinct photonic bandgaps in the visible and near‐infrared ranges, which are rarely observed in CNC composites. The structural coloration is controlled by the stacking of MXene nanoscale‐thin layers separated by the thicker cellulose nanocrystals matrix, as confirmed by photonic simulations. The unique combination of distinctly different optical appearances in transmittance and reflectance modes occurs in films printed with just a few layers. This is because of the molecularly smooth interfaces and the high refractive contrast between bio‐based and inorganic phases, which result in a concurrence of constructive and destructive interference. These lamellar biophotonic films open the possibilities for advanced radiative cooling, camouflaging, multifunctional capacitors, and optical filtration applications, while the cellulose nanocrystals matrix strengthens their flexibility, robustness, and facilitates sustainability.
more »
« less
Exploring the Impact of Spatial Factors on Circadian Daylight Distribution
Lighting strongly influences indoor well-being, yet existing metrics like "Daylight Autonomy" and "Annual Solar Exposure" overlook circadian light. Research highlights circadian light's significant impact on human performance, creating a need to explore spatial factors affecting its distribution. This study examines the influence of surface reflectance, proximity to windows, windows' optical properties, and gaze direction on circadian light. Using the Lark Plugin for Grasshopper, simulations were conducted in a box-model room with ten glazing systems varying in visible transmittance. The results show that windows with a visible transmittance below 0.3 fail to provide adequate circadian light unless the gaze is perpendicular. Among surface reflectance factors, wall reflectance proved more critical than ceiling reflectance in optimizing circadian light exposure.
more »
« less
- Award ID(s):
- 2001207
- PAR ID:
- 10572082
- Publisher / Repository:
- American Solar Energy Society
- Date Published:
- ISBN:
- 979-8-3313-0908-4
- Page Range / eLocation ID:
- 167 to 178
- Subject(s) / Keyword(s):
- circadian light spatial factors window wellbeing daylight
- Format(s):
- Medium: X
- Location:
- Washington DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The focus of this work is on the measurement and analysis of the radiative properties of polycrystalline SiO2 particle beds with various layer thicknesses. The particles are polydispersed with average diameters of 222, 150, and 40 μm. The spectral, directional–hemispherical reflectance and transmittance of the particle bed are measured at wavelengths from 0.4 to 1.8 μmusing a monochromator, and the reflectance measurement is extended to 15 μmusing a Fourier-transform infrared spectrometer. Particles are closely packed between two transparent windows for measuring the radiative properties. In the visible and near-infrared region up to 1.8 μm, the inverse adding–doubling method yields the effective absorption and scattering coefficients. The results suggest that short wavelength absorption needs to be included in modeling the behavior of particle beds due to multiple scattering. A discrete-scale Monte Carlo ray-tracing method is developed to model the radiative properties by assuming monodispersed spherical particles, and the simulated results compare well with measurements. The effective absorption and scattering coefficients of the particle beds obtained from the independent scattering theory are compared to those from the inverse method. The impact of dependent scattering on the packed beds is observed for smaller-sized particles.more » « less
-
In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.more » « less
-
We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.more » « less
-
Windows and glazing systems play an important role in making an energy-efficient home. A portable easy-to-use in-situ measuring system of the window properties using low-cost Arduino platforms and compatible sensors is developed, 3D-printed, and then fabricated in this project and used to measure the parameters including U-factor, Solar Heat Gain Coefficient (SHGC), and Visible Light Transmittance (VT). Comparing resultant output from the developed Arduino sensing and measurements to professional in-situ instruments, we demonstrate that this simple and compact Arduino-based instrument can obtain major window properties with reasonable accuracy. This simple but scalable sensing and measuring approach and Do-It-Yourself (DIY) fabrication workflow could be performed by creative people and even homeowners without needing complex training and building physics knowledge.more » « less