skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demonstration of a programmable optical lattice atom interferometer
Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024  more » « less
Award ID(s):
2016244 2207963
PAR ID:
10589664
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Physical Review Research
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
4
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent topological model, even though the underlying model in the absence of interactions admits only topologically trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering. Published by the American Physical Society2025 
    more » « less
  2. In this paper, we investigate a design approach of reinforcement learning to engineer a gyroscope in an optical lattice for the inertial sensing of rotations. Our methodology is not based on traditional atom interferometry, that is, splitting, reflecting, and recombining wavefunction components. Instead, the learning agent is assigned the task of generating lattice shaking sequences that optimize the sensitivity of the gyroscope to rotational signals in an end-to-end design philosophy. What results is an interference device that is completely distinct from the familiar Mach-Zehnder-type interferometer. For the same total interrogation time, the end-to-end design leads to a twentyfold improvement in sensitivity over traditional Bragg interferometry. Published by the American Physical Society2024 
    more » « less
  3. We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024 
    more » « less
  4. We demonstrate a left-right asymmetry control of the photoelectron angular distribution in multiphoton ionization of Li atoms by a bichromatic laser field. By delaying the fundamental (780 nm) and its second harmonic relative to each other in steps of 130 attoseconds, we can vary the relative phase between the two laser fields with subwavelength accuracy and thereby steer the ejected electrons. Good agreement is found between the measurements and calculations at the appropriate intensities of the two harmonics. Published by the American Physical Society2024 
    more » « less
  5. In this paper, we propose a paradigm for atom interferometry and demonstrate that there exists a universal set of atom optic components for inertial sensing. These components constitute gates with which we carry out quantum operations and represent input-output matter wave transformations between lattice eigenstates. Each gate is associated with a modulation pattern of the position of the optical lattice according to machine-designed protocols. In this methodology, a sensor can be reprogramed to respond to an evolving set of design priorities without modifying the hardware. We assert that such a gate set is metrologically universal, in analogy to universal gate sets for quantum computing. Experimental confirmation of the designed operation is demonstrated via imaging of the spatial evolution of a Bose-Einstein condensate in an optical lattice and by measurement of the momentum probabilities following time-of-flight expansion. The representation of several basic quantum sensing circuits is presented for the measurement of inertial forces, rotating reference frames, and gravity gradients. Published by the American Physical Society2025 
    more » « less