skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Hidden Time Reversal in Driven XXZ Spin Chains: Exact Solutions and New Dissipative Phase Transitions
We show that several models of interacting X X Z spin chains subject to boundary driving and dissipation possess a subtle kind of time-reversal symmetry, making their steady states exactly solvable. We focus on a model with a coherent boundary drive, showing that it exhibits a unique continuous dissipative phase transition as a function of the boundary drive amplitude. This transition has no analog in the bulk closed system or in incoherently driven models. We also show the steady-state magnetization exhibits a surprising fractal dependence on interaction strength, something previously associated with less easily measured infinite-temperature transport quantities (the Drude weight). Our exact solution also directly yields driven-dissipative double-chain models that have pure, entangled steady states that are current carrying. Published by the American Physical Society2025  more » « less
Award ID(s):
2016136
PAR ID:
10593081
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
134
Issue:
13
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We derive an exact solution for the steady state of a setup where two X X -coupled N -qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative X X spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED. Published by the American Physical Society2024 
    more » « less
  2. Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of 128 fb 1 of proton-proton collisions at s = 13 TeV are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in R -parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on R -parity violating top squarks and gluinos. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  3. First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayer WSe 2 in a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show that WSe 2 realizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field. Published by the American Physical Society2024 
    more » « less
  4. We investigate the magnetic properties of S = 1 antiferromagnetic diamond-lattice, Ni X 2 ( pyrimidine ) 2 ( X = Cl ,   Br ) , hosting a single-ion anisotropy (SIA) orientation which alternates between neighboring sites. Through neutron diffraction measurements of the X = Cl compound, the ordered state spins are found to align collinearly along a pseudo-easy axis, a unique direction created by the intersection of two easy planes. Similarities in the magnetization, exhibiting spin-flop transitions, and the magnetic susceptibility in the two compounds imply that the same magnetic structure and a pseudo-easy axis is also present for X = Br . We estimate the Hamiltonian parameters by combining analytical calculations and Monte Carlo (MC) simulations of the spin-flop and saturation field. The MC simulations also reveal that the spin-flop transition occurs when the applied field is parallel to the pseudo-easy axis. Contrary to conventional easy-axis systems, there exist field directions perpendicular to the pseudo-easy axis for which the magnetic saturation is approached asymptotically and no symmetry-breaking phase transition is observed at finite fields. Published by the American Physical Society2024 
    more » « less
  5. We examine the bulk electronic structure of Nd 3 Ni 2 O 7 using Ni 2 p core-level hard x-ray photoemission spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a large deviation of the Ni 3 d occupation from the formal Ni 2.5 + valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant d 8 configuration is accompanied by nearly equal contributions from d 7 and d 9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni d x 2 y 2 and d z 2 orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025 
    more » « less