Introducing facile regenerability into adsorbent materials can potentially increase sustainability in water treatment systems enabled by extended use. Herein, we detail our recent syntheses of dynamic nanostructured worm-gel materials and their implementation as regenerable adsorbents for water treatment. Photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA) was employed to synthesize various polymer nanostructures, including dispersed spheres, worms, and vesicles, and nanostructured worm-gels, via the synthesis and simultaneous in situ assembly of BAB triblock copolymers. Two dynamic, disulfide-functionalized macroinitiators (SS-MI-1 and 2)with different degree of polymerization and one nondynamic macroinitiator (CC-MI) were synthesized via polymerization of oligo(ethylene glycol methyl ether methacrylate) (OEGMA). PhotoATR-PISA was then implemented via the chain extension fromSS-MI-1, 2 and CC-MI with glycidyl methacrylate (GMA) or benzyl methacrylate (BMA) forming BAB-type triblock copolymer nanoparticles in situ. The final morphology in PhotoATR-PISA was influenced not only by conventional factors such as solids content and block DP but also by unimer exchange rates yielding arrested, nanostructured worm-gels in many instances and arrested vesicle-gels in one instance. These PISA-gel materials were implemented as adsorbents for phenanthrene, a model compound registered as a priority pollutant by the US EPA, from aqueous solutions. The chemical tunability of these materials enabled enhanced, targeted removal of phenanthrene facilitated by π−π interactions, as evidenced by the increased adsorption capacities of PBMA-based PISA-gels when compared to PGMA. Furthermore, the dynamicity of disulfide worm-gels (SS-WG) enabled disulfide exchange-induced regeneration stimulated by UV light. This UV-responsive exchange was investigated for POEGMA macroinitiators as well as dissolved triblock copolymers, dispersed nanoparticles, and SS-WG materials. Finally, the regenerability of the PNT-saturated SS-WG adsorbents induced by UV irradiation (λ = 365 nm) was examined and compared with control worm-gels absent of disulfides, demonstrating enhanced recovery of adsorption capacity under mild irradiation conditions. 
                        more » 
                        « less   
                    This content will become publicly available on September 8, 2026
                            
                            Changing Self‐Assembly Through Degradation: Phenyl Vinyl Ketone Polymer Nanoparticles Under Light
                        
                    
    
            Abstract Photodegradable nanoparticles with sphere, worm, and vesicle morphologies were synthesized following polymerization induced self‐assembly (PISA), incorporating a photoresponsive phenyl vinyl ketone (PVK) block and a nonphoto responsive 2‐hydroxypropyl methacrylamide (HPMA) block. The photodegradation of nanoparticles under UV revealed that the initial shapes of sphere and vesicle particles are retained even until 7 h and after 24 h of photo‐induced degradation, respectively, despite a significant reduction in molecular weight (Mn). This could be due to the assembly of degraded PVK fragments in the hydrophobic region, maintaining the relative hydrophilic to hydrophobic ratio. However, worm nanoparticles exhibited a fast morphology reversal after 2 min of degradation, yielding sphere nanoparticles. Therefore, photo responsive PVK nanoparticles with morphology and conversion‐dependent degradation behavior were explored. Furthermore, undegraded and degraded nanoparticle coatings exhibited different surface properties, determined by contact angle measurements, with both morphology and degradation impacting the surface properties. Finally, the PVK nanoparticles could encapsulate molecules and release them upon degradation. Therefore, this study can ultimately be applied to numerous fields due to the potential uses of degradable polymers in various material systems, especially for the controlled release of agrochemicals, cleaning agents, or antifungal agents, as well as to enable surface modifications upon degradation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2203727
- PAR ID:
- 10644130
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Smart, multi-stimuli-responsive nanogels that possess dynamic covalent bonds (DCBs) exhibit reversibility under equilibrium conditions allowing for controlled disassembly and release of cargo. These nanomaterials have innumerable applications in areas including drug delivery, sensors, soft actuators, smart surfaces, and environmental remediation. In this work, we implement one-pot, photo-controlled atom transfer radical polymerization-induced self-assembly (PhotoATR-PISA), mediated by UV light (λ = 365 nm) and parts per million (ppm) levels (ca. <20 ppm) of a copper(II) bromide catalyst, to fabricate dual crosslinked, polymeric nanogels with tunable orthogonal reversible covalent (TORC-NGs) core-crosslinks (CCLs). These TORC-NGs were crosslinked efficiently via coumarin photodimerization which occured simultaneously during polymerization using coumarin-functionalized methacrylate crosslinkers (CouMA). At the same time, crosslinking of nanocarriers with N,N-cystamine bismethacrylamide (CBMA) introduced orthogonal, redox-responsive, disulfide CCLs. Furthermore, incorporation of poly(glycidyl methacrylate) (PGMA) core-forming segments provided a simple handle for switchable solubility through acid-catalyzed ring-opening hydrolysis of pendant epoxide groups. In this way, the kinetics of release were tailored by the pH of the surrounding media. Thus, these TORC-NG systems showed coupled pH-, redox- and photo-responsive controlled release and disassembly behavior with full release of cargo only observed in the right sequence of stimuli and only when all three are utilized. The multi-stimuli-responsive nature of these TORC-NGs was successfully utilized herein for the controlled encapsulation and on-demand AND-gate release of hydrophobic Nile Red fluorescent reporters used as drug simulants. Various TORC-NG morphologies were synthesized in this report including nanosphere, worm-like and tubesome NGs showing variable release characteristics.more » « less
- 
            The morphology of self-assembled block copolymer aggregates is highly dependent on the relative volume fraction of the hydrophobic block. Thus, a dramatic change in the volume fraction of the hydrophobic block can elicit on-demand morphological transitions. Herein, a novel hydrophobic monomer containing a photolabile nitrobenzyl (Nb) protecting group was synthesized and incorporated into a block copolymer with poly(ethylene glycol) methacrylate. This motif allows for the hydrophobic volume fraction of the amphiphilic block copolymer to be dramatically reduced in situ to induce a morphological transition upon irradiation with UV light. Two amphiphilic block copolymers, Nb 94 and Nb 176, with hydrophobic weight fractions of 80% and 86%, respectively, were synthesized and their self-assembly in water studied. Nb 94 assembled into vesicles with R h = 235 nm and underwent a morphological transition after 21 minutes of UV irradiation to spherical micelles with R h = 27 nm, determined by dynamic light scattering and confirmed by transmission electron microscopy. At intermediate irradiation times (14–20 min), Nb 94 vesicles swelled to a larger size, but underwent a morphological transition over the course of hours or days, depending on the exact irradiation time. Nb 176 assembled into large compound vesicles with a hydrodynamic radius ( R h ) of 973 nm, as determined by dynamic light scattering (DLS), which decreased to ca. 700 nm after 300 minutes of UV irradiation with no apparent morphological transition. This study elucidates the mechanism and kinetics of the morphological transitions of block copolymer assemblies induced by a change in the hydrophobic volume fraction of the polymer.more » « less
- 
            The positional effect of stimuli-responsive units in tri-component copolymer vesicles is studied to explore variations in the host–guest properties of the assembly. We study this by placing pH-responsive diisopropylaminoethyl moieties in three distinct locations of a block copolymer assembly. In two of the three variations, these functionalities were randomly distributed in the hydrophobic or the hydrophilic domains of an amphiphilic diblock copolymer. In a third variation, this responsive functionality was incorporated as the middle block in a triblock copolymer. The results reveal that the solvent exposure of the responsive units holds the key for controlling the rate of molecular release from these polymer vesicles. The study also shows that equilibrium changes in the morphology of an assembly are not good indicators of the responsive host–guest properties of a polymer assembly.more » « less
- 
            Bicontinuous nanospheres (BCNs) are underutilized self-assembled nanostructures capable of simultaneous delivery of both hydrophilic and hydrophobic payloads. Here, we demonstrate that BCNs assembled from poly(ethylene glycol)- block -poly(propylene sulfide) (PEG- b -PPS), an oxidation-sensitive copolymer, are stably retained within cell lysosomes following endocytosis, resisting degradation and payload release for days until externally triggered. The oxygen scavenging properties and enhanced stability of the bicontinuous PEG- b -PPS nanoarchitecture significantly protected cells from typically cytotoxic application of pro-apoptotic photo-oxidizer pheophorbide A and chemotherapeutic camptothecin. The photo-oxidation triggered transition from a bicontinuous to micellar morphology overcame this stability, allowing on-demand cytosolic delivery of camptothecin for enhanced control over off–on cytotoxicity. These results indicate that inducible transitions in the nanostructure morphology can influence intracellular stability and toxicity of self-assembled nanotherapeutics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
