skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of temperature on the stability and performance of III-nitride HEMT magnetic field sensors
The study aimed to investigate the underlying physics limiting the temperature stability and performance of non-surface passivated Al0.34Ga0.66N/GaN Hall effect sensors, including contacts, under atmospheric conditions. The results obtained from analyzing the microstructural evolution in the Al0.34Ga0.66N/GaN Hall sensor heterostructure were found to correlate with the electrical performance of the Hall effect sensor. High-resolution x-ray photoelectron spectroscopy studies revealed the signature of surface oxidation in the GaN cap layer, as well as a slight out-diffusion of “Al” from the AlGaN barrier layer. To prevent the formation of a bumpy surface morphology at the Ohmic contact, we investigated the impact of “Pt” top Ohmic contacts. The application of a top “Pt” contact stack resulted in a smooth Ohmic contact surface and provided evidence that the bumpy surface morphology in Au-based Ohmic contacts is due to the formation of an Al-Au viscous alloy during rapid thermal annealing. In the early stages of thermal aging, the small drop in contact resistivity stabilized with subsequent thermal aging past the initial 550 h at 200 °C. The outcome is that the Al0.34Ga0.66N/GaN Hall effect sensors, even without surface passivation, exhibited a stable response to applied magnetic fields with no sign of significant degradation after 2800 h of thermal aging at 200 °C under atmospheric conditions. This observed stability in the Hall sensor without surface passivation can be attributed to a self-imposed surface oxidation of the cap layer during the early stages of aging, which serves as a protective layer for the device during subsequent extended periods of thermal aging at 200 °C.  more » « less
Award ID(s):
2131972
PAR ID:
10648177
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Applied Physics Letters
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
4
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beta gallium oxide (β-Ga2O3) shows significant promise in high-temperature, high-power, and sensing electronics applications. However, long-term stable metallization layers for Ohmic contacts at high temperatures present unique thermodynamic challenges. The current most common Ohmic contact design based on 20 nm of Ti has been repeatedly demonstrated to fail at even moderately elevated temperatures (300–400 °C) due to a combination of nonstoichiometric Ti/Ga2O3 interfacial reactions and kinetically favored Ti diffusion processes. Here, we demonstrate stable Ohmic contacts for Ga2O3 devices operating up to 500–600 °C using ultrathin Ti layers with a self-limiting interfacial reaction. The ultrathin Ti layer in the 5 nm Ti/100 nm Au contact stack is designed to fully oxidize while forming an Ohmic contact, thereby limiting both thermodynamic and kinetic instability. This novel contact design strategy results in an epitaxial conductive anatase titanium oxide interface layer that enables low-resistance Ohmic contacts that are stable both under long-term continuous operation (>500 h) at 600 °C in vacuum (≤10−4 Torr), as well as after repeated thermal cycling (15 times) between room temperature and 550 °C in flowing N2. This stable Ohmic contact design will accelerate the development of high-temperature devices by enabling research focus to shift toward rectifying interfaces and other interfacial layers. 
    more » « less
  2. Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to the Fermi level. In the Co/Pt/Gr system the proximity-induced spin polarization in graphene and its gate control are strongly enhanced by the presence of a surface band near the Fermi level. Furthermore, the shift of the Dirac point could be eliminated entirely by selecting submonolayer coverage in the passivation layer. Our findings open a path towards experimental realization of an optimized two-dimensional system with gate-tunable spin-dependent properties. 
    more » « less
  3. A number of technological applications and scientific experiments require processes for preparing metal multilayers with electronically and thermally conductive interfaces. We investigate how in situ vs ex situ synthesis processes affect the thermal conductance of metal/metal interfaces. We use time-domain thermoreflectance experiments to study thermal transport in Au/Fe, Al/Cu, and Cu/Pt bilayer samples. We quantify the effect of exposing the bottom metal layer to an ambient environment prior to deposition of the top metal layer. We observe that for Au/Fe, exposure of the Fe layer to air before depositing the top Au layer significantly impedes interfacial electronic currents. Exposing Cu to air prior to depositing an Al layer effectively eliminates interfacial electronic heat currents between the two metal layers. Exposure to air appears to have no effect on interfacial transport in the Cu/Pt system. Finally, we show that a short RF sputter etch of the bottom layer surface is sufficient to ensure a thermally and electronically conductive metal/metal interface in all materials we study. We analyze our results with a two-temperature model and bound the electronic interface conductance for the nine samples we study. Our findings have applications for thin-film synthesis and advance fundamental understanding of electronic thermal conductance at different types of interfaces between metals. 
    more » « less
  4. Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices. 
    more » « less
  5. The recent demonstration of  W mm−1output power at 94 GHz in AlN/GaN/AlN high‐electron‐mobility transistors (HEMTs) has established AlN as a promising platform for millimeter‐wave electronics. The current state‐of‐art AlN HEMTs using ex situ‐deposited silicon nitride (SiN) passivation layers suffer from soft gain compression due to trapping of carriers by surface states. Reducing surface state dispersion in these devices is thus desired to access higher output powers. Herein, a potential solution using a novel in situ crystalline AlN passivation layer is provided. A thick, 30+ nm‐top AlN passivation layer moves the as‐grown surface away from the 2D electron gas (2DEG) channel and reduces its effect on the device. Through a series of metal‐polar AlN/GaN/AlN heterostructure growths, it is found that pseudomorphically strained 15 nm thin GaN channels are crucial to be able to grow thick AlN barriers without cracking. The fabricated recessed‐gate HEMTs on an optimized heterostructure with 50 nm AlN barrier layer and 15 nm GaN channel layer show reduction in dispersion down to compared with in current state‐of‐art ex situ SiN‐passivated HEMTs. These results demonstrate the efficacy of this unique in situ crystalline AlN passivation technique and should unlock higher mm‐wave powers in next‐generation AlN HEMTs. 
    more » « less