skip to main content


Search for: All records

Creators/Authors contains: "Dong, Haibo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study investigates the interaction of a two-manta-ray school using computational fluid dynamics simulations. The baseline case consists of two in-phase undulating three-dimensional manta models arranged in a stacked configuration. Various vertical stacked and streamwise staggered configurations are studied by altering the locations of the top manta in the upstream and downstream directions. Additionally, phase differences between the two mantas are considered. Simulations are conducted using an in-house developed incompressible flow solver with an immersed boundary method. The results reveal that the follower will significantly benefit from the upstroke vortices (UVs) and downstroke vortices depending on its streamwise separation. We find that placing the top manta 0.5 body length (BL) downstream of the bottom manta optimizes its utilization of UVs from the bottom manta, facilitating the formation of leading-edge vortices (LEVs) on the top manta’s pectoral fins during the downstroke. This LEV strengthening mechanism, in turn, generates a forward suction force on the follower that results in a 72% higher cycle-averaged thrust than a solitary swimmer. This benefit harvested from UVs can be further improved by adjusting the phase of the top follower. By applying a phase difference ofπ/3to the top manta, the follower not only benefits from the UVs of the bottom manta but also leverages the auxiliary vortices during the upstroke, leading to stronger tip vortices and a more pronounced forward suction force. The newfound interaction observed in schooling studies offers significant insights that can aid in the development of robot formations inspired by manta rays.

     
    more » « less
  2. Abstract

    Metachronous rowing is a swimming mechanism widely adopted by small marine invertebrate like comb jellies, in which rows of appendages perform propulsive strokes sequentially in a coordinated manner with a fixed phase difference. To simulate metachronous rowing at intermediate Reynolds number, in this paper, a row of flexible cilia models was placed inside the flow field, with their roots stroke at a sinusoidal function of time and a fixed phase difference. A fully coupled two-way numerical solver was developed, which solves the Navier-Stokes equations for the fluid field coupled with the differential equation for the flexible cilia model. This numerical solver is applied to investigate how the row of cilia models are deformed by the hydrodynamic forces (pressure and shear) and momentum and thus impact hydrodynamic performance. Results show that the passive deformation of cilia potentially improve the hydrodynamic performance compared to the rigid cilia. With the metachronous rowing mechanism, the cilia generate the thrust to move forward. The approach used in this study presents a general way to explore the fluid dynamics of complex fluid-structure interaction problems.

     
    more » « less
    Free, publicly-accessible full text available October 29, 2024
  3. In this study, we numerically investigate the effects of the tail-beat phase differences between the trailing fish and its neighboring fish on the hydrodynamic performance and wake dynamics in a two-dimensional high-density school. Foils undulating with a wavy-like motion are employed to mimic swimming fish. The phase difference varies from 0° to 360°. A sharp-interface immersed boundary method is used to simulate flows over the fish-like bodies and provide quantitative analysis of the hydrodynamic performance and wakes of the school. It is found that the highest net thrust and swimming efficiency can be reached at the same time in the fish school with a phase difference of 180°. In particular, when the phase difference is 90°, the trailing fish achieves the highest efficiency, 58% enhancement compared with a single fish, while it has the highest thrust production, increased by 108% over a single fish, at a phase difference of 0°. The performance and flow visualization results suggest that the phase of the trailing fish in the dense school can be controlled to improve thrust and propulsive efficiency, and these improvements occur through the hydrodynamic interactions with the vortices shed by the neighboring fish and the channel formed by the side fish. In addition, the investigation of the phase difference effects on the wake dynamics of schools performed in this work represents the first study in which the wake patterns for systems consisting of multiple undulating bodies are categorized. In particular, a reversed Bénard–von Kármán vortex wake is generated by the trailing fish in the school with a phase difference of 90°, while a Bénard–von Kármán vortex wake is produced when the phase difference is 0°. Results have revealed that the wake patterns are critical to predicting the hydrodynamic performance of a fish school and are highly dependent on the phase difference.

     
    more » « less
  4. This paper numerically studies the flow dynamics of aerial undulation of a snake-like model, which is adapted from the kinematics of the flying snake (Chrysopelea) undergoing a gliding process. The model applies aerial undulation periodically in a horizontal plane where a range of angle of attack (AOA) is assigned to model the real gliding motion. The flow is simulated using an immersed-boundary-method-based incompressible flow solver. Local mesh refinement mesh blocks are implemented to ensure the grid resolutions around the moving body. Results show that the undulating body produces the maximum lift at 45° of AOA. Vortex dynamics analysis has revealed a series of vortex structures including leading-edge vortices (LEV), trailing-edge vortices, and tip vortices around the body. Changes in other key parameters including the undulation frequency and Reynolds number are also found to affect the aerodynamics of the studied snake-like model, where increasing of undulation frequency enhances vortex steadiness and increasing of Reynolds number enhances lift production due to the strengthened LEVs. This study represents the first study of both the aerodynamics of the whole body of the snake as well as its undulatory motion, providing a new basis for investigating the mechanics of elongated flexible flyers.

     
    more » « less
  5. Numerical studies are presented on the propulsive performance and vortex dynamics of multiple hydrofoils pitching in an in-line configuration. The study is motivated by the quest to understand the hydrodynamics of multiple fin–fin interactions in fish swimming. Using the flow conditions (Strouhal and Reynolds numbers) obtained from a solitary pitching foil of zero net thrust, the effect of phase differences between neighboring foils on the hydrodynamic performance is examined both in position-fixed two- and three-foil systems at Reynolds number Re = 500. It is found that the threefoil system achieves a thrust enhancement up to 118% and an efficiency enhancement up to 115% compared to the two-foil system. Correspondingly, the leading-edge vortex (LEV) and the trailing-edge vortex (TEV) of the hindmost foil combine to form a ‘2P’ wake structure behind the three-foil system with the optimal phase differences instead of a ‘2S’ wake, a coherent wake pattern observed behind the optimal two-foil system. The finding suggests that a position-fixed three-foil system can generate a ‘2P’ wake to achieve the maximum thrust production and propulsive efficiency simultaneously by deliberately choosing the undulatory phase for each foil. When increasing Reynolds number to 1000, though the maximum thrust and propulsive efficiency are not achieved simultaneously, the most efficient case still produces more thrust than most of the other cases. Besides, the study on the effects of three-dimensionality shows that when the foils have a larger aspect ratio, the three-foil system has a better hydrodynamic performance, and it follows a similar trend as the two-dimensional (2D) foil system. This work aids in the future design of high-performance underwater vehicles with multiple controlled propulsion elements. 
    more » « less
  6. The wavelength of undulatory kinematics of fish is an important parameter to determine their hydrodynamic performance. This study focuses on numerical examination of this feature by reconstructing the real physiological model and kinematics of steadily swimming Jack Fish. We perform three-dimensional numerical simulations for flows over these models composed of the trunk, and dorsal, anal, and caudal fins. Moreover, we prescribe the carangiform-like motion for its undulation for a range of wavelengths. Undulation with larger wavelengths improves the hydrodynamic performance of the carangiform swimmer in terms of better thrust production by the caudal fin, lower drag production on the trunk, and reduced power consumption by the trunk. This coincides with the formation of stronger posterior body vortices and leading-edge vortices with more circulation on the caudal fin. The real kinematics of Jack Fish surpasses the performance of those with prescribed motion owing to the flexibility of the caudal fin. 
    more » « less
  7. Three-dimensional numerical simulations are carried out to study the hydrodynamic performance and flow features of a bio-inspired underwater propulsor. The propulsor is constituted by a passive pitching panel. The leading edge of the panel is prescribed under a periodic heaving motion while the panel pitches passively due to the employing of a stiffness-lumped torsional spring at the leading edge. Effects of the torsional spring stiffness have been put emphases on. A real-time tunable stiffness strategy is presented and employed in the study. We first study the passive pitching effects on the hydrodynamics and flow features of the panel using a series of constant stiffness and then we study the tunable stiffness effects using cosinusoidal curve based waveforms, in which the effects of phase difference (ϕ) between the stiffness profile and the oscillation motion and as well as the effects of stiffness fluctuation amplitude (Gk) are investigated, respectively. The stiffness profile beneficial for propulsion efficiency is further applied to cases with different oscillation amplitudes. A high-fidelity immersed boundary method based direct numerical simulation (DNS) solver is employed to acquire the fluid dynamics and to simulate the flow. The panel passive pitching motion is solved by coupling the DNS flow solver and the Euler rigid body dynamic equation. Results show that for the constant stiffness cases, the panel generates sinusoidal-like pitching motion, and in certain stiffness range, flexibility could benefit efficiency while holding some extent of stiffness could enhance the thrust. For the tunable stiffness cases, it is found that both the mean thrust and propulsive efficiency improved when the stiffness change is in-phase with the heaving motion (ϕ = 0). The largest mean thrust is found at ϕ = 120 degree. 
    more » « less
  8. Numerical simulations are employed to study hydrodynamic interactions between two-dimensional fish-like bodies under a traveling wavy lateral motion in high-density diamond-shaped fish schools. This study focuses on two different streamwise spacings, a dense school with 0.4 body length (BL) spacing and a sparse school with 2.0 BL spacing, respectively. An immersed-boundary-method-based incompressible Navier–Strokes flow solver is then employed to quantitatively simulate the resulting flow patterns and associated propulsive performance of the schools. The results suggest that a fish in the dense school achieves higher thrust production and higher propulsive efficiency than that in the sparse school due to a strong wall effect from neighboring fishes. In addition, results from changing the lateral spacing in the dense school have shown that the wall effect is enhanced as the lateral spacing decreases. Flow analyses have shown that the wake pattern of the fish swimming diagonally behind the leading fish in a dense diamond-shaped school transfers from 2S to 2P when the lateral spacing is smaller than 0.6 BL. As a result, an angled jet is produced behind the school and brings more momentum downstream. At the same time, the appearance of the trailing fish results in a stronger pressure region behind the leading fish and leads to a higher hydrodynamic performance of the leading fish in the dense school. The insights revealed from this study will contribute to understanding physical mechanisms in fish schools and providing a new swimming strategy for bio-inspired underwater swarm robots. 
    more » « less
  9. Abstract

    To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (Caranx hippos) fish. Then, we present a computational framework for handling fluid–structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species.

     
    more » « less
  10. Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna ( Thunnus albacares ) during steady swimming. High-speed videos were obtained to provide kinematic data on the in vivo motion of finlets. High-fidelity simulations were then carried out to examine the hydrodynamic performance and vortex dynamics of a biologically realistic multiple-finlet model with reconstructed kinematics. It was found that finlets undergo both heaving and pitching motion and are delayed in phase from anterior to posterior along the body. Simulation results show that finlets were drag producing and did not produce thrust. The interactions among finlets helped reduce total finlet drag by 21.5%. Pitching motions of finlets helped reduce the power consumed by finlets during swimming by 20.8% compared with non-pitching finlets. Moreover, the pitching finlets created constructive forces to facilitate posterior body flapping. Wake dynamics analysis revealed a unique vortex tube matrix structure and cross-flow streams redirected by the pitching finlets, which supports their hydrodynamic function in scombrid fishes. Limitations on modelling and the generality of results are also discussed. 
    more » « less