skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Gupta, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available October 29, 2024
  3. Abstract

    Recent progress in non-Hermitian physics and the notion of exceptional point (EP) degeneracies in elastodynamics have led to the development of novel metamaterials for the control of elastic wave propagation, hypersensitive sensors, and actuators. The emergence of EPs in a parity-time symmetric system relies on judiciously engineered balanced gain and loss mechanisms. Creating gain requires complex circuits and amplification mechanisms, making engineering applications challenging. Here, we report strategies to achieve EPs in passive non-Hermitian elastodynamic systems with differential loss derived from viscoelastic materials. We compare different viscoelastic material models and show that the EP emerges only when the frequency-dependent loss-tangent of the viscoelastic material remains nearly constant in the frequency range of operation. This type of loss tangent occurs in materials that undergo stress-relaxation over a broad spectrum of relaxation times, for example, materials that follow the Kelvin–Voigt fractional derivative (KVFD) model. Using dynamic mechanical analysis, we show that a few common viscoelastic elastomers, such as polydimethylsiloxane and polyurethane rubber, follow the KVFD behavior such that the loss tangent becomes almost constant after a particular frequency. The material models we present and the demonstration of the potential of a widely available material system in creating EPs pave the way for developing non-Hermitian metamaterials with hypersensitivity to perturbations or enhanced emissivity.

     
    more » « less
  4. Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped reward function. Intrinsically motivated exploration methods address this limitation by rewarding agents for visiting novel states or transitions, but these methods offer limited benefits in large environments where most discovered novelty is irrelevant for downstream tasks. We describe a method that uses background knowledge from text corpora to shape exploration. This method, called ELLM (Exploring with LLMs) rewards an agent for achieving goals suggested by a language model prompted with a description of the agent’s current state. By leveraging large-scale language model pretraining, ELLM guides agents toward human-meaningful and plausibly useful behaviors without requiring a human in the loop. We evaluate ELLM in the Crafter game environment and the Housekeep robotic simulator, showing that ELLM-trained agents have better coverage of common-sense behaviors during pretraining and usually match or improve performance on a range of downstream tasks. 
    more » « less