skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeon, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cook, S; Katz, B; Moore_Russo, D (Ed.)
    We report preliminary results of selected questions from a national survey of instructors of geometry courses for secondary teachers about the nature of instructor-student interactions. Survey responses (n= 118) are used to indicate six latent constructs describing aspects of instructor-student interaction that in turn quantify hypothesized characteristics of two didactical contracts, which we call inquiry in geometry and study of geometry. We found that instructors whose highest degree is in mathematics education are less likely to rely on a study of geometry contract than instructors whose highest degree is in mathematics. Also, instructors who have previously taught high school geometry are less likely to lecture. 
    more » « less
    Free, publicly-accessible full text available December 22, 2025
  2. Kosko, K; Caniglia, J; Courtney, S; Zolfaghari, M; Morris, G (Ed.)
    We report partial analysis of a survey of instructors of undergraduate geometry courses for teachers, attending to how they described the nature of the mathematical work they engage students in and the opportunities to learn that students had. Analysis of latent construct correlations showed that engagement of students in inquiry into geometry was significantly associated with opportunity to learn about mathematical definitions and conjecturing and engagement of students in the study of geometry was significantly associated with opportunity to learn about axioms and about history of geometry. Latent variable means comparisons showed group differences in claimed opportunity to learn between instructors whose highest degree was in mathematics and those whose highest degree was in mathematics education. 
    more » « less
    Free, publicly-accessible full text available November 30, 2025
  3. This paper explores the potential of online lesson visualization and annotation tools in fostering international lesson-centered teacher collaboration. In an era where teachers face diverse challenges and limited opportunities for peer-to-peer collaboration, leveraging digital tools for asynchronous exchanges emerges as a promising avenue for professional development. This paper will illustrate the potential of emerging technologies for supporting cross-cultural exchanges in which teachers can share insights, perspectives, and innovative practices in durable and archivable forms, thereby enriching the collective knowledge base for teaching. We share data from an ongoing project focused on engaging groups of secondary mathematics teachers in collectively refining a single storyboarded lesson. Through collaborative lesson development and iterative refinement, we illustrate how these tools transcend temporal and spatial constraints by sharing data gathered from three different groups involved in cross-cultural exchange (one situated in the western part of the U.S, one situated in the eastern part of the U.S., and one situated in Bulgaria) centered on storyboard representation of a lesson. In this way, we provide insights on how the lean graphics of the storyboard and the asynchronous nature of annotation can foster a culture of continuous improvement and mutual support among mathematics teachers spread over large geographic distances. Ultimately, we advocate for the widespread adoption of online multimedia authoring tools as integral components of contemporary approaches to cross-cultural collaboration on lessons for facilitating meaningful exchanges and promoting excellence in teaching and learning on a global scale 
    more » « less
  4. Existing building recognition methods, exemplified by BRAILS, utilize supervised learning to extract information from satellite and street-view images for classification and segmentation. However, each task module requires human-annotated data, hindering the scalability and robustness to regional variations and annotation imbalances. In response, we propose a new zero-shot workflow for building attribute extraction that utilizes large-scale vision and language models to mitigate reliance on external annotations. The proposed workflow contains two key components: image-level captioning and segment-level captioning for the building images based on the vocabularies pertinent to structural and civil engineering. These two components generate descriptive captions by computing feature representations of the image and the vocabularies, and facilitating a semantic match between the visual and textual representations. Consequently, our framework offers a promising avenue to enhance AI-driven captioning for building attribute extraction in the structural and civil engineering domains, ultimately reducing reliance on human annotations while bolstering performance and adaptability. 
    more » « less
  5. Microstructural properties of thin-film absorber layers play a vital role in developing high-performance solar cells. Scanning probe microscopy is frequently used for measuring spatially inhomogeneous properties of thin-film solar cells. While powerful, the nanoscale probe can be sensitive to the roughness of samples, introducing convoluted signals and unintended artifacts into the measurement. Here, we apply a glancing-angle focused ion beam (FIB) technique to reduce the surface roughness of CdTe while preserving the subsurface optoelectronic properties of the solar cells. We compare the nanoscale optoelectronic properties “before” and “after” the FIB polishing. Simultaneously collected Kelvin-probe force microscopy (KPFM) and atomic force microscopy (AFM) images show that the contact potential difference (CPD) of CdTe pristine (peak-to-valley roughness > 600 nm) follows the topography. In contrast, the CPD map of polished CdTe (< 20 nm) is independent of the surface roughness. We demonstrate the smooth CdTe surface also enables high-resolution photoluminescence (PL) imaging at a resolution much smaller than individual grains (< 1 μm). Our finite-difference time-domain (FDTD) simulations illustrate how the local light excitation interacts with CdTe surfaces. Our work supports low-angle FIB polishing can be beneficial in studying buried sub-microstructural properties of thin-film solar cells with care for possible ion-beam damage near the surface. 
    more » « less
  6. An investigation of high-transverse-momentum (high- p T ) photon-triggered jets in proton-proton ( p p ) and ion-ion ( A A ) collisions at s N N = 0.2 and 5.02 TeV is carried out, using the multistage description of in-medium jet evolution. Monte Carlo simulations of hard scattering and energy loss in heavy-ion collisions are performed using parameters tuned in a previous study of the nuclear modification factor ( R A A ) for inclusive jets and high- p T hadrons. We obtain a good reproduction of the experimental data for photon-triggered jet R A A , as measured by the ATLAS detector, the distribution of the ratio of jet to photon p T ( X J γ ), measured by both CMS and ATLAS, and the photon-jet azimuthal correlation as measured by CMS. We obtain a moderate description of the photon-triggered jet I A A , as measured by STAR. A noticeable improvement in the comparison is observed when one goes beyond prompt photons and includes bremsstrahlung and decay photons, revealing their significance in certain kinematic regions, particularly at X J γ > 1 . Moreover, azimuthal angle correlations demonstrate a notable impact of bremsstrahlung photons on the distribution, emphasizing their role in accurately describing experimental results. This work highlights the success of the multistage model of jet modification to straightforwardly predict (this set of) photon-triggered jet observables. This comparison, along with the role played by bremsstrahlung photons, has important consequences on the inclusion of such observables in a future Bayesian analysis. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  7. The Collaboration reports a new determination of the jet transport parameter q ̂ in the quark-gluon plasma (QGP) using Bayesian inference, incorporating all available inclusive hadron and jet yield suppression data measured in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). This multi-observable analysis extends the previously published Bayesian inference determination of q ̂ , which was based solely on a selection of inclusive hadron suppression data. is a modular framework incorporating detailed dynamical models of QGP formation and evolution, and jet propagation and interaction in the QGP. Virtuality-dependent partonic energy loss in the QGP is modeled as a thermalized weakly coupled plasma, with parameters determined from Bayesian calibration using soft-sector observables. This Bayesian calibration of q ̂ utilizes active learning, a machine-learning approach, for efficient exploitation of computing resources. The experimental data included in this analysis span a broad range in collision energy and centrality, and in transverse momentum. In order to explore the systematic dependence of the extracted parameter posterior distributions, several different calibrations are reported, based on combined jet and hadron data; on jet or hadron data separately; and on restricted kinematic or centrality ranges of the jet and hadron data. Tension is observed in comparison of these variations, providing new insights into the physics of jet transport in the QGP and its theoretical formulation. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and (linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated in comparison with high- p T charged hadrons, D mesons, and the inclusive jet nuclear modification factors, using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening transport coefficient q ̂ . To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future such analyses. Published by the American Physical Society2024 
    more » « less
  9. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026