skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Rundong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 4, 2026
  2. Engineering projects, such as designing a solar farm that converts solar radiation shined on the Earth into electricity, engage students in addressing real-world challenges by learning and applying geoscience knowledge. To improve their designs, students benefit from frequent and informative feedback as they iterate. However, teacher attention may be limited or inadequate, both during COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for engineering design with a built-in artificial intelligence teaching assistant (AITA). We also present two curriculum units (Solar Energy Science and Solar Farm Design), where students explore the Sun-Earth relationship and optimize the energy output and yearly profit of a solar farm with the help of the AITA. We tested the software and curriculum units with over 100 students in two Midwestern high schools. Pre- and post-survey data showed improvements in understanding of science concepts and self-efficacy in engineering design. Pre-post analysis of design performance gains reveals that AI helped lower achievers more than higher achievers. Interviews revealed students’ values and preferences when receiving feedback. Our findings suggest that AITAs may be helpful as an additional feedback mechanism for geoscience and engineering education. Future efforts should focus on improving the usability of the software and providing multiple types of feedback to promote inclusive and equitable use of AI in education. 
    more » « less
    Free, publicly-accessible full text available August 5, 2025
  3. First-year engineering students are often introduced to the engineering design process through project-based learning situated in a concrete design context. Design contexts like mechanical engineering are commonly used, but students and teachers may need more options. In this article, we show how sustainable building design can serve as an alternative for students of diverse backgrounds and with various interests. The proposed Net Zero Energy Challenge is an engineering design project in which students practice the full engineering design cycle to create a virtual house that generates renewable energy on-site, with the goal to achieve net zero energy consumption. Such a design challenge is made possible by Aladdin, an integrated tool that supports building design, simulation, and analysis within a single package. A pilot study of the Net Zero Energy Challenge at a university in Mid-Atlantic United States suggests that around half of the students were able to achieve the design goal. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. Video analysis tools such as Tracker are used to study mechanical motion captured by photography. One can also imagine a similar tool for tracking thermal motion captured by thermography. Since its introduction to physics education, thermal imaging has been used to visualize phenomena that are invisible to the naked eye and teach a variety of physics concepts across different educational settings. But thermal cameras are still scarce in schools. Hence, videos recorded using thermal cameras such as those featured in “YouTube Physics” are suggested as alternatives. The downside is that students do not have interaction opportunities beyond playing those videos. 
    more » « less
  5. During the COVID-19 pandemic, many students lost opportunities to explore science in labs due to school closures. Remote labs provide a possible solution to mitigate this loss. However, most remote labs to date are based on a somehow centralized model in which experts design and conduct certain types of experiments in well-equipped facilities, with a few options of manipulation provided to remote users. In this paper, we propose a distributed framework, dubbed remote labs 2.0, that offers the flexibility needed to build an open platform to support educators to create, operate, and share their own remote labs. Similar to the transformation of the Web from 1.0 to 2.0, remote labs 2.0 can greatly enrich experimental science on the Internet by allowing users to choose and contribute their subjects and topics. As a reference implementation, we developed a platform branded as Telelab. In collaboration with a high school chemistry teacher, we conducted remote chemical reaction experiments on the Telelab platform with two online classes. Pre/post-test results showed that these high school students attained significant gains (t(26)=8.76, p<0.00001) in evidence-based reasoning abilities. Student surveys revealed three key affordances of Telelab: live experiments, scientific instruments, and social interactions. All 31 respondents were engaged by one or more of these affordances. Students behaviors were characterized by analyzing their interaction data logged by the platform. These findings suggest that appropriate applications of remote labs 2.0 in distance education can, to some extent, reproduce critical effects of their local counterparts on promoting science learning. 
    more » « less
  6. null (Ed.)
    Digital sensors allow people to collect a large quantity of data in chemistry experiments. Using infrared thermography as an example, we show that this kind of data, in conjunction with videos that stream the chemical phenomena under observation from a vantage point, can be used to construct digital twins of experiments to support science education on the cloud in a visual and interactive fashion. Through digital twins, a significant part of laboratory experiences such as observation, analysis, and discussion can be delivered on a large scale. Thus, the technology can potentially broaden participation in experimental chemistry, especially for students and teachers in underserved communities who may lack the expertise, equipment, and supplies needed to conduct certain experiments. With a cloud platform that enables anyone to store, process, and disseminate experimental data via digital twins, our work also serves as an example to illuminate how the movement of open science, which is largely driven by data sharing, may be powered by technology to amplify its impacts on chemistry education. 
    more » « less
  7. null (Ed.)
    Laboratory experiences are a staple of science education (National Research Council 2006): Not only do they provide students with an avenue to acquire authentic skills needed for scientific research, referred to as science and engineering practices by NGSS, but they also allow students to go beyond rote memorization of facts to deepen their understanding of science through inquiry. 
    more » « less