Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Just-in-time (JIT) compilers are used by many modern programming systems in order to improve performance. Bugs in JIT compilers provide exploitable security vulnerabilities and debugging them is difficult as they are large, complex, and dynamic. Current debugging and visualization tools deal with static code and are not suitable in this domain. We describe a new approach for simplifying the large and complex intermediate representation, generated by a JIT compiler and visualize it with a metro map metaphor to aid developers in debugging.
-
We consider the construction of a polygon P with n vertices whose turning angles at the vertices are given by a sequence A=(α0,…,αn−1) , αi∈(−π,π) , for i∈{0,…,n−1} . The problem of realizing A by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an angle graph. In 2D, we characterize sequences A for which every generic polygon P⊂R2 realizing A has at least c crossings, for every c∈N , and describe an efficient algorithm that constructs, for a given sequence A, a generic polygon P⊂R2 that realizes A with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence A can be realized by a (not necessarily generic) polygon P⊂R3 , and for every realizable sequence the algorithm finds a realization.
-
This paper introduces and studies the following beyond-planarity problem, which we call h-Clique2Path Planarity. Let G be a simple topological graph whose vertices are partitioned into subsets of size at most h, each inducing a clique. h-Clique2Path Planarity asks whether it is possible to obtain a planar subgraph of G by removing edges from each clique so that the subgraph induced by each subset is a path. We investigate the complexity of this problem in relation to k-planarity. In particular, we prove that h-Clique2Path Planarity is NP-complete even when h=4 and G is a simple 3-plane graph, while it can be solved in linear time when G is a simple 1-plane graph, for any value of h. Our results contribute to the growing fields of hybrid planarity and of graph drawing beyond planarity.