Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lodging is the permanent displacement of stalks due to disrupted secondary cell walls caused by external factors, plant characters and their interaction. Anatomical, morphological and compositional traits are among lodging-inducing plant traits. In comparison with morphological and anatomical features, the correlation of lodging resistance and cell wall composition is not frequently reviewed. In this review, the relation between cell wall composition and lodging resistance of cereal stalks is comprehensively reviewed based on major cell wall components (lignin, cellulose and hemicellulose) and trace minerals. From the body of literatures reviewed across all cereal crops, lignin and cellulose were found to have significant positive correlation with lodging resistance. However, the effect of structural features of cellulose and lignin on lodging resistance was not investigated in most of the studies. This review also highlights the importance of biomass recalcitrance and lodging resistance trade-offs in the spectrum of genetic cell wall modifications.more » « less
-
The purpose of this study was to develop a replicable methodology for testing the capabilities and characteristics of a wind turbine blade in a structural re-use application with the specific goal of creating and demonstrating an efficient and commercially viable wind blade pedestrian bridge design. Wind energy experienced a dramatic increase in popularity following the turn of the century and it is now a common source of renewable energy around the world. However, while wind turbines are able to produce clean energy while in service, turbine blades are designed for a fatigue life of only about 20 years. With the difficulty and costs associated with recycling the composite material blades used on the turbines, wind power companies choose to dispose of decommissioned blades in landfills instead. The Re-Wind BladeBridge project aims to promote a more sustainable life cycle for wind power by demonstrating that decommissioned wind turbine blades have the capability to be repurposed as structural elements in bridges. This paper presents an analysis and characterization of a LM 13.4 wind blade from a Nordex N29 turbine, along with a design for a pedestrian bridge using two LM 13.4 wind blades to create a 5-meter span bridge. Software developed by the Re-Wind team called “BladeMachine” was used to generate the engineering properties of the blade at multiple sections along the blade length. Resin burnout tests and mechanical testing in tension and compression were performed to determine the material and mechanical properties of the composite materials in the blade. Additionally, a four-point edgewise bending test was performed on a 4-meter section of the wind blade to evaluate its load carrying behavior. The results of these tests revealed that the LM 13.4 blades are suitable to be re-utilized as girders for a short-span pedestrian bridge. An overview of the design of the BladeBridge currently under construction in County Cork, Ireland is presented, including details on the architectural and structural design processes.more » « less
-
Active inference proposes a unifying principle for perception and action as jointly minimizing the free energy of an agent’s internal world model. In the active inference literature, world models are typically pre-specified or learned through interacting with an environment. This paper explores the possibility of learning world models of active inference agents from recorded demonstrations, with an application to human driving behavior modeling. The results show that the presented method can create models that generate human-like driving behavior but the approach is sensitive to input features.more » « less
-
Zingoni, A. (Ed.)This paper presents two case studies of the repurposing projects of decommissioned wind turbine blades in architectural and structural engineering applications conducted under a multinational research project is entitled “Re-Wind” (www.re-wind.info) that was funded by the US-Ireland Tripartite program. The group has worked closely together in the Re-Wind Network over the past five years to conduct research on the topic of repurposing of decommissioned FRP wind turbine blades. Repurposing is defined by the ReWind team as the reverse engineering, redesigning and remanufacturing of a wind blade that has reached the end of its life on a turbine and taken out of service and then reused as a load-bearing structural element in a new structure (e.g., bridge, transmission pole, sound barrier, sea-wall, shelter). Further repurposing examples are provided in a publicly available Re-Wind Design Catalog. The Re-Wind Network was the first group to develop practical methods and design procedures to make these new “second-life” structures. The Network has developed design and construction details for two full-size prototype demonstration structures – a pedestrian bridge constructed in Cork, Ireland in January 2022 and a transmission pole to be constructed at the Smoky Hills Wind Farm in Lincoln and Ellsworth Counties, in Kansas, USA in the late 2022. The paper provides details on the planning, design, analysis, testing and construction of these two demonstration projects.more » « less
-
Abstract The imaging of individual Ba2+ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba2+ion imaging inside a high-pressure xenon gas environment. Ba2+ions chelated with molecular chemosensors are resolved at the gas-solid interface using a diffraction-limited imaging system with scan area of 1 × 1 cm2located inside 10 bar of xenon gas. This form of microscopy represents key ingredient in the development of barium tagging for neutrinoless double beta decay searches in136Xe. This also provides a new tool for studying the photophysics of fluorescent molecules and chemosensors at the solid-gas interface to enable bottom-up design of catalysts and sensors.more » « less
-
Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ %, which exceeds the 80% specification defined in the original DarkSide-20k production plan.more » « lessFree, publicly-accessible full text available May 1, 2026
-
The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV c−2. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV c−2 particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP–nucleon interaction cross-sections below 1 × 10−42 cm2 is achievable for WIMP masses above 800 MeV c−2. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV c−2.more » « less
-
Abstract Modeling the shortwave radiation balance over the Southern Ocean region remains a challenge for Earth system models. To investigate whether this is related to the representation of aerosol‐cloud interactions, we compared measurements of the total number concentration of sea spray‐generated particles within the Southern Ocean region to model predictions thereof. Measurements were conducted from a container laboratory aboard the R/VTangaroathroughout an austral summer voyage to the Ross Sea. We used source‐receptor modeling to calculate the sensitivity of our measurements to upwind surface fluxes. From this approach, we could constrain empirical parameterizations of sea spray surface flux based on surface wind speed and sea surface temperature. A newly tuned parameterization for the flux of sea spray particles based on the near‐surface wind speed is presented. Comparisons to existing model parameterizations revealed that present model parameterizations led to overestimations of sea spray concentrations. In contrast to previous studies, we found that including sea surface temperature as an explanatory variable did not substantially improve model‐measurement agreement. To test whether or not the parameterization may be applicable globally, we conducted a regression analysis using a database of in situ whitecap measurements. We found that the key fitting parameter within this regression agreed well with the parameterization of sea spray flux. Finally, we compared calculations from the best model of surface flux to boundary layer measurements collected onboard an aircraft throughout the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), finding good agreement overall.more » « less
-
Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019.more » « less
An official website of the United States government

Full Text Available