Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Canonical morphological segmentation is the process of analyzing words into the standard (aka underlying) forms of their constituent morphemes.This is a core task in endangered language documentation, and NLP systems have the potential to dramatically speed up this process. In typical language documentation settings, training data for canonical morpheme segmentation is scarce, making it difficult to train high quality models. However, translation data is often much more abundant, and, in this work, we present a method that attempts to leverage translation data in the canonical segmentation task. We propose a character-level sequence-to-sequence model that incorporates representations of translations obtained from pretrained high-resource monolingual language models as an additional signal. Our model outperforms the baseline in a super-low resource setting but yields mixed results on training splits with more data. Additionally, we find that we can achieve strong performance even without needing difficult-to-obtain word level alignments. While further work is needed to make translations useful in higher-resource settings, our model shows promise in severely resource-constrained settings.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Distributional approaches have proven effective in modeling semantics and phonology through vector embeddings. We explore whether distributional representations can also effectively model morphological information. We train static vector embeddings over morphological sequences. Then, we explore morpheme categories for fusional morphemes, which encode multiple linguistic dimensions, and often have close relationships to other morphemes. We study whether the learned vector embeddings align with these linguistic dimensions, finding strong evidence that this is the case. Our work uses two low-resource languages, Uspanteko and Tsez, demonstrating that distributional morphological representations are effective even with limited data.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing and logic rules to guide a neural network, and minimizing human intervention. On test data, the model achieves promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Calzolari, Nicoletta ; Kan, Min-Yen ; Hoste, Veronique ; Lenci, Alessandro ; Sakti, Sakriani ; Xue, Nianwen (Ed.)Uniform Meaning Representation (UMR) is a semantic labeling system in the AMR family designed to be uniformly applicable to typologically diverse languages. The UMR labeling system is quite thorough and can be time-consuming to execute, especially if annotators are starting from scratch. In this paper, we focus on methods for bootstrapping UMR annotations for a given language from existing resources, and specifically from typical products of language documentation work, such as lexical databases and interlinear glossed text (IGT). Using Arapaho as our test case, we present and evaluate a bootstrapping process that automatically generates UMR subgraphs from IGT. Additionally, we describe and evaluate a method for bootstrapping valency lexicon entries from lexical databases for both the target language and English. We are able to generate enough basic structure in UMR graphs from the existing Arapaho interlinearized texts to automate UMR labeling to a significant extent. Our method thus has the potential to streamline the process of building meaning representations for new languages without existing large-scale computational resources.more » « lessFree, publicly-accessible full text available May 1, 2025
-
This paper describes the LECS Lab submission to the AmericasNLP 2024 Shared Task on the Creation of Educational Materials for Indigenous Languages. The task requires transforming a base sentence with regards to one or more linguistic properties (such as negation or tense). We observe that this task shares many similarities with the well-studied task of word-level morphological inflection, and we explore whether the findings from inflection research are applicable to this task. In particular, we experiment with a number of augmentation strategies, finding that they can significantly benefit performance, but that not all augmented data is necessarily beneficial. Furthermore, we find that our character-level neural models show high variability with regards to performance on unseen data, and may not be the best choice when training data is limited.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Generalization is of particular importance in resource-constrained settings, where the available training data may represent only a small fraction of the distribution of possible texts. We investigate the ability of morpheme labeling models to generalize by evaluating their performance on unseen genres of text, and we experiment with strategies for closing the gap between performance on in-distribution and out-of-distribution data. Specifically, we use weight decay optimization, output denoising, and iterative pseudo-labeling, and achieve a 2% improvement on a test set containing texts from unseen genres. All experiments are performed using texts written in the Mayan language Uspanteko.more » « less
-
Calzolari, Nicoletta ; Kan, Min-Yen ; Hoste, Veronique ; Lenci, Alessandro ; Sakti, Sakriani ; Xue, Nianwen (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « lessFree, publicly-accessible full text available May 20, 2025
-
Linguistic analysis is a core task in the process of documenting, analyzing, and describing endangered and less-studied languages. In addition to providing insight into the properties of the language being studied, having tools to automatically label words in a language for grammatical category and morphological features can support a range of applications useful for language pedagogy and revitalization. At the same time, most modern NLP methods for these tasks require both large amounts of data in the language and compute costs well beyond the capacity of most research groups and language communities. In this paper, we present a gloss-to-gloss (g2g) model for linguistic analysis (specifically, morphological analysis and part-of-speech tagging) that is lightweight in terms of both data requirements and computational expense. The model is designed for the interlinear glossed text (IGT) format, in which we expect the source text of a sentence in a low-resource language, a translation of that sentence into a language of wider communication, and a detailed glossing of the morphological properties of each word in the sentence. We first produce silver standard parallel glossed data by automatically labeling the high-resource translation. The model then learns to transform source language morphological labels into output labels for the target language, mediated by a structured linguistic representation layer. We test the model on both low-resource and high-resource languages, and find that our simple CNN-based model achieves comparable performance to a state-of-the-art transformer-based model, at a fraction of the computational cost.more » « less
-
Calzolari, Nicoletta ; Kan, Min-Yen ; Hoste, Veronique ; Lenci, Alessandro ; Sakti, Sakriani ; Xue, Nianwen (Ed.)This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.more » « lessFree, publicly-accessible full text available May 1, 2025
-
This paper presents the findings of the SIGMORPHON 2023 Shared Task on Interlinear Glossing. This first iteration of the shared task explores glossing of a set of six typologically diverse languages: Arapaho, Gitksan, Lezgi, Natügu, Tsez and Uspanteko. The shared task encompasses two tracks: a resource-scarce closed track and an open track, where participants are allowed to utilize external data resources. Five teams participated in the shared task. The winning team Tü-CL achieved a 23.99%-point improvement over a baseline RoBERTa system in the closed track and a 17.42%-point improvement in the open track.more » « less