Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern model hubs, such as Hugging Face, store tens of petabytes of LLMs, with fine-tuned variants vastly outnumbering base models and dominating storage consumption. Existing storage reduction techniques---such as deduplication and compression---are either LLM-oblivious or not compatible with each other, limiting data reduction effectiveness. Our large-scale characterization study across all publicly available Hugging Face LLM repositories reveals several key insights: (1) fine-tuned models within the same family exhibit highly structured, sparse parameter differences suitable for delta compression; (2) bitwise similarity enables LLM family clustering; and (3) tensor-level deduplication is better aligned with model storage workloads, achieving high data reduction with low metadata overhead. Building on these insights, we design BitX, an effective, fast, lossless delta compression algorithm that compresses XORed difference between fine-tuned and base LLMs. We build ZipLLM, a model storage reduction pipeline that unifies tensor-level deduplication and lossless BitX compression. By synergizing deduplication and compression around LLM family clustering, ZipLLM reduces model storage consumption by 54%, over 20% higher than state-of-the-art deduplication and compression approaches.more » « less
-
Interactive notebook programming is universal in modern ML and AI workflows, with interactive deep learning training (IDLT) emerging as a dominant use case. To ensure responsiveness, platforms like Jupyter and Colab reserve GPUs for long-running notebook sessions, despite their intermittent and sporadic GPU usage, leading to extremely low GPU utilization and prohibitively high costs. In this paper, we introduce NotebookOS, a GPU-efficient notebook platform tailored for the unique requirements of IDLT. NotebookOS employs replicated notebook kernels with Raft-synchronized replicas distributed across GPU servers. To optimize GPU utilization, NotebookOS oversubscribes server resources, leveraging high inter-arrival times in IDLT workloads, and allocates GPUs only during active cell execution. It also supports replica migration and automatic cluster scaling under high load. Altogether, this design enables interactive training with minimal delay. In evaluation on production workloads, NotebookOS saved over 1,187 GPU hours in 17.5 hours of real-world IDLT, while significantly improving interactivity.more » « less
An official website of the United States government

Full Text Available