Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Self-regulation is crucial for student success in scientific inquiry and engineering design. However, it remains unclear how students dynamically engage in self-regulated learning (SRL) processes to achieve high performance. In this study, we investigated the temporal nature of self-regulation during engineering design by leveraging computer trace data from 101 high school students who designed an energy-plus house in a simulated learning environment. Using sequential mining, we found that high-performing students were more engaged in the Observation, Analysis, and Evaluation phases of SRL than low-performing students. Additionally, high-performing students demonstrated consecutive sequential patterns between Observation and Analysis, Reformation and Evaluation, and Analysis and Evaluation behaviors. These findings provide insights into students’ SRL processes and the design of scaffoldings.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Engineering projects, such as designing a solar farm that converts solar radiation shined on the Earth into electricity, engage students in addressing real-world challenges by learning and applying geoscience knowledge. To improve their designs, students benefit from frequent and informative feedback as they iterate. However, teacher attention may be limited or inadequate, both during COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for engineering design with a built-in artificial intelligence teaching assistant (AITA). We also present two curriculum units (Solar Energy Science and Solar Farm Design), where students explore the Sun-Earth relationship and optimize the energy output and yearly profit of a solar farm with the help of the AITA. We tested the software and curriculum units with over 100 students in two Midwestern high schools. Pre- and post-survey data showed improvements in understanding of science concepts and self-efficacy in engineering design. Pre-post analysis of design performance gains reveals that AI helped lower achievers more than higher achievers. Interviews revealed students’ values and preferences when receiving feedback. Our findings suggest that AITAs may be helpful as an additional feedback mechanism for geoscience and engineering education. Future efforts should focus on improving the usability of the software and providing multiple types of feedback to promote inclusive and equitable use of AI in education.more » « lessFree, publicly-accessible full text available August 5, 2025
-
First-year engineering students are often introduced to the engineering design process through project-based learning situated in a concrete design context. Design contexts like mechanical engineering are commonly used, but students and teachers may need more options. In this article, we show how sustainable building design can serve as an alternative for students of diverse backgrounds and with various interests. The proposed Net Zero Energy Challenge is an engineering design project in which students practice the full engineering design cycle to create a virtual house that generates renewable energy on-site, with the goal to achieve net zero energy consumption. Such a design challenge is made possible by Aladdin, an integrated tool that supports building design, simulation, and analysis within a single package. A pilot study of the Net Zero Energy Challenge at a university in Mid-Atlantic United States suggests that around half of the students were able to achieve the design goal.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Data-driven generative design (DDGD) methods utilize deep neural networks to create novel designs based on existing data. The structure-aware DDGD method can handle complex geometries and automate the assembly of separate components into systems, showing promise in facilitating creative designs. However, determining the appropriate vectorized design representation (VDR) to evaluate 3D shapes generated from the structure-aware DDGD model remains largely unexplored. To that end, we conducted a comparative analysis of surrogate models’ performance in predicting the engineering performance of 3D shapes using VDRs from two sources: the trained latent space of structure-aware DDGD models encoding structural and geometric information and an embedding method encoding only geometric information. We conducted two case studies: one involving 3D car models focusing on drag coefficients and the other involving 3D aircraft models considering both drag and lift coefficients. Our results demonstrate that using latent vectors as VDRs can significantly deteriorate surrogate models’ predictions. Moreover, increasing the dimensionality of the VDRs in the embedding method may not necessarily improve the prediction, especially when the VDRs contain more information irrelevant to the engineering performance. Therefore, when selecting VDRs for surrogate modeling, the latent vectors obtained from training structure-aware DDGD models must be used with caution, although they are more accessible once training is complete. The underlying physics associated with the engineering performance should be paid attention. This paper provides empirical evidence for the effectiveness of different types of VDRs of structure-aware DDGD for surrogate modeling, thus facilitating the construction of better surrogate models for AI-generated designs.
-
Abstract In this paper, we present a predictive and generative design approach for supporting the conceptual design of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural network architecture, which consists of two modules: (1) a training module with two encoders and one decoder (E2D network) and (2) an application module performing the generative design of new 3D shapes and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the proposed approach in the design of 3D car body and mugs. The results show that our approach can generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details, which have better visualization than voxels and point clouds, and are ready for downstream engineering evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing).more » « less
-
Video analysis tools such as Tracker are used to study mechanical motion captured by photography. One can also imagine a similar tool for tracking thermal motion captured by thermography. Since its introduction to physics education, thermal imaging has been used to visualize phenomena that are invisible to the naked eye and teach a variety of physics concepts across different educational settings. But thermal cameras are still scarce in schools. Hence, videos recorded using thermal cameras such as those featured in “YouTube Physics” are suggested as alternatives. The downside is that students do not have interaction opportunities beyond playing those videos.more » « less