skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Yi, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks are able to memorize noisy labels easily with a softmax cross entropy (CE) loss. Previous studies attempted to address this issue focus on incorporating a noise-robust loss function to the CE loss. However, the memorization issue is alleviated but still remains due to the non-robust CE loss. To address this issue, we focus on learning robust contrastive representations of data on which the classifier is hard to memorize the label noise under the CE loss. We propose a novel contrastive regularization function to learn such representations over noisy data where the label noise does not dominate the representation learning. By theoretically investigating the representations induced by the proposed regularization function, we reveal that the learned representations keep information related to true labels and discard information related to corrupted labels from images. Moreover, our theoretical results also indicate that the learned representations are robust to the label noise. Experiments on benchmark datasets demonstrate that the efficacy of our method. 
    more » « less
  2. null (Ed.)
    In this paper, we examine the long-neglected yet important effects of point sampling patterns in point cloud GANs. Through extensive experiments, we show that sampling-insensitive discriminators (e.g.PointNet-Max) produce shape point clouds with point clustering artifacts while sampling-oversensitive discriminators (e.g. PointNet++, DGCNN) fail to guide valid shape generation. We propose the concept of sampling spectrum to depict the different sampling sensitivities of discriminators. We further study how different evaluation metrics weigh the sampling pattern against the geometry and propose several perceptual metrics forming a sampling spectrum of metrics. Guided by the proposed sampling spectrum, we discover a middle-point sampling-aware baseline discriminator, PointNet-Mix, which improves all existing point cloud generators by a large margin on sampling-related metrics. We point out that, though recent research has been focused on the generator design, the main bottleneck of point cloud GAN actually lies in the discriminator design. Our work provides both suggestions and tools for building future discriminators. We will release the code to facilitate future research. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Localizing the camera in a known indoor environment is a key building block for scene mapping, robot navigation, AR, etc. Recent advances estimate the camera pose via optimization over the 2D/3D-3D correspondences established between the coordinates in 2D/3D camera space and 3D world space. Such a mapping is estimated with either a convolution neural network or a decision tree using only the static input image sequence, which makes these approaches vulnerable to dynamic indoor environments that are quite common yet challenging in the real world. To address the aforementioned issues, in this paper, we propose a novel outlier-aware neural tree which bridges the two worlds, deep learning and decision tree approaches. It builds on three important blocks: (a) a hierarchical space partition over the indoor scene to construct the decision tree; (b) a neural routing function, implemented as a deep classification network, employed for better 3D scene understanding; and (c) an outlier rejection module used to filter out dynamic points during the hierarchical routing process. Our proposed algorithm is evaluated on the RIO-10 benchmark developed for camera relocalization in dynamic indoor environments. It achieves robust neural routing through space partitions and outperforms the state-of-the-art approaches by around 30% on camera pose accuracy, while running comparably fast for evaluation. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)