skip to main content


Title: Adjustment of the Mechanical Properties of Mg2Nd and Mg2Yb by Optimizing Their Microstructures
The deformation behavior of the extruded magnesium alloys Mg2Nd and Mg2Yb was investigated at room temperature. By using in situ energy-dispersive synchrotron X-ray diffraction compression and tensile tests, accompanied by Elasto-Plastic Self-Consistent (EPSC) modeling, the differences in the active deformation systems were analyzed. Both alloying elements change and weaken the extrusion texture and form precipitates during extrusion and subsequent heat treatments relative to common Mg alloys. By varying the extrusion parameters and subsequent heat treatment, the strengths and ductility can be adjusted over a wide range while still maintaining a strength differential effect (SDE) of close to zero. Remarkably, the compressive and tensile yield strengths are similar and there is no mechanical anisotropy when comparing tensile and compressive deformation, which is desirable for industrial applications. Uncommon for Mg alloys, Mg2Nd shows a low tensile twinning activity during compression tests. We show that heat treatments promote the nucleation and growth of precipitates and increase the yield strengths isotopically up to 200 MPa. The anisotropy of the yield strength is reduced to a minimum and elongations to failure of about 0.2 are still achieved. At lower strengths, elongations to failure of up to 0.41 are reached. In the Mg2Yb alloy, adjusting the extrusion parameters enhances the rare-earth texture and reduces the grain size. Excessive deformation twinning is, however, observed, but despite this the SDE is still minimized.  more » « less
Award ID(s):
1729887 1727495
PAR ID:
10268153
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Metals
Volume:
11
Issue:
3
ISSN:
2075-4701
Page Range / eLocation ID:
377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work systematically investigates the texture-property linkages in hexagonal close-packed (hexagonal) materials using a three-dimensional computational crystal plasticity approach. Magnesium and its alloys are considered as a model system. We perform full-field, large-strain, micromechanical simulations using a wide range of surrogate textures that also sample several experimental datasets for a range of Mg alloys. The role of textural variability and the associated sensitivity of deformation mechanisms on the evolution of the macroscopic plastic anisotropy and strength asymmetry is mapped under uniaxial tensile and compressive loading along the material principal and off-axes orientations. To assess the role of crystallographic plastic anisotropy, two distinct material datasets are simulated, which represent pure and alloyed magnesium. The results provide insights into experimental observations reported for magnesium alloys over a range of materials textures. We discuss potential implications on the damage tolerance from the aggregate plastic anisotropy arising from intrinsic crystallographic and textural effects. 
    more » « less
  2. The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%. 
    more » « less
  3. Dilute Mg-Al-Ca-Mn alloys exhibit excellent strength-ductility combinations in the peak-aged condition due to ordered, single atomic layer Guinier-Preston (GP) zones. The present work explains why rolled sheet material is softer and less responsive to aging, as compared to extruded. Using crystal-plasticity modeling, it is shown that the initial texture of the rolled material permits the soft modes, basal slip and twinning, to accommodate more of the strain during in-plane tension, and they are less responsive to hardening by the finely dispersed GP zones. Even with the same number density of GP zones, the extruded material is stronger in tension along the extrusion axis due to an initial texture which forces higher relative activity of prismatic slip, a mode previously shown to be strongly affected by the GP zones. The present work reemphasizes the significant role of the initial texture in determining the strength and anisotropy of non-cubic metals and alloys. 
    more » « less
  4. In our previous study, we observed a lack of $\left\{ {10\bar{1}2} \right\}$ twinning in a deformed Mg–Y alloy, which contributed to the observed yield “symmetry.” However, the effects of texture and grain size on polycrystalline deformation made it difficult to fully understand why twinning was not active. Therefore, we report herein in-depth study by in situ transmission electron microscopy, i.e., in situ TEM. The in situ deformation of nano-sized Mg–Y pillars revealed that prismatic slip was favored over twinning, namely, the critical stress required to activate prismatic slip was lower than that for twinning. This finding diametrically differs from that reported in other nano/micro-pillar deformation studies, where twinning is always the dominant deformation mechanism. By measuring the critical stresses for basal, prismatic, and pyramidal slip systems, this in situ TEM study also sheds light on the effects of the alloying element Y on reducing the intrinsic plastic anisotropy in the Mg matrix. 
    more » « less
  5. The microstructure, Vickers hardness, and compressive properties of novel low-activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) high-entropy alloys (HEAs) were studied. The alloys were fabricated by vacuum-arc melting and the characteristics of these alloys were explored. The microstructures of all the alloys exhibited a typical morphology of dendritic and eutectic structures. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys are essentially single phase, consisting of a disordered body-centered-cubic (BCC) phase, whereas the VCrFeTa0.2W0.2 alloy contains fine, nanoscale precipitates distributed in the BCC matrix. The lattice parameters and compositions of the identified phases were investigated. The alloys have Vickers hardness values ranging from 546 HV0.2 to 1135 HV0.2 with the x ranging from 0.1 to 1, respectively. The VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys exhibit compressive yield strengths of 1341 MPa and 1742 MPa, with compressive plastic strains of 42.2% and 35.7%, respectively. VCrFeTa0.1W0.1 and VCrFeTa0.2W0.2 alloys have excellent hardness after annealing for 25 h at 600–1000 °C, and presented compressive yield strength exceeding 1000 MPa with excellent heat-softening resistance at 600–800 °C. By applying the HEA criteria, Ta and W additions into the VCrFeTaW are proposed as a family of candidate materials for fusion reactors and high-temperature structural applications. 
    more » « less