Given m users (voters), where each user casts her preference for a single item (candidate) over n items (candidates) as a ballot, the preference aggregation problem returns k items (candidates) that have the k highest number of preferences (votes). Our work studies this problem considering complex fairness constraints that have to be satisfied via proportionate representations of different values of the group protected attribute(s) in the top- k results. Precisely, we study the margin finding problem under single ballot substitutions , where a single substitution amounts to removing a vote from candidate i and assigning it to candidate j and the goal is to minimize the number of single ballot substitutions needed to guarantee that the top-k results satisfy the fairness constraints. We study several variants of this problem considering how top- k fairness constraints are defined, (i) MFBinaryS and MFMultiS are defined when the fairness (proportionate representation) is defined over a single, binary or multivalued, protected attribute, respectively; (ii) MF-Multi2 is studied when top- k fairness is defined over two different protected attributes; (iii) MFMulti3+ investigates the margin finding problem, considering 3 or more protected attributes. We study these problems theoretically, and present a suite of algorithms with provable guarantees. We conduct rigorous large scale experiments involving multiple real world datasets by appropriately adapting multiple state-of-the-art solutions to demonstrate the effectiveness and scalability of our proposed methods.
more »
« less
Diverse Data Selection under Fairness Constraints
Diversity is an important principle in data selection and summarization, facility location, and recommendation systems. Our work focuses on maximizing diversity in data selection, while offering fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification objective with fairness constraints. More specifically, given a universe 𝒰 of n elements that can be partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise minimum distance within the set (diversity) and contains a pre-specified k_i number of elements from each group i (fairness). We show that this problem is NP-complete even in metric spaces, and we propose three novel algorithms, linear in n, that provide strong theoretical approximation guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the case where groups can be overlapping.
more »
« less
- PAR ID:
- 10287166
- Date Published:
- Journal Name:
- International Conference on Database Theory
- Volume:
- 186
- Page Range / eLocation ID:
- 13:1--13:25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hashmap is a fundamental data structure in computer science. There has been extensive research on constructing hashmaps that minimize the number of collisions leading to efficient lookup query time. Recently, the data-dependant approaches, construct hashmaps tailored for a target data distribution that guarantee to uniformly distribute data across different buckets and hence minimize the collisions. Still, to the best of our knowledge, none of the existing technique guarantees group fairness among different groups of items stored in the hashmap. Therefore, in this paper, we introduce FairHash, a data-dependant hashmap that guarantees uniform distribution at the group-level across hash buckets, and hence, satisfies the statistical parity notion of group fairness. We formally define, three notions of fairness and, unlike existing work, FairHash satisfies all three of them simultaneously. We propose three families of algorithms to design fair hashmaps, suitable for different settings. Our ranking-based algorithms reduce the unfairness of data-dependant hashmaps without any memory-overhead. The cut-based algorithms guarantee zero-unfairness in all cases, irrespective of how the data is distributed, but those introduce an extra memory-overhead. Last but not least, the discrepancy-based algorithms enable trading off between various fairness notions. In addition to the theoretical analysis, we perform extensive experiments to evaluate the efficiency and efficacy of our algorithms on real datasets. Our results verify the superiority of FairHash compared to the other baselines on fairness at almost no performance cost.more » « less
-
To address the sample selection bias between the training and test data, previous research works focus on reweighing biased training data to match the test data and then building classification models on there weighed raining data. However, how to achieve fairness in the built classification models is under-explored. In this paper, we propose a framework for robust and fair learning under sample selection bias. Our framework adopts there weighing estimation approach for bias correction and the minimax robust estimation approach for achieving robustness on prediction accuracy. Moreover, during the minimax optimization, the fairness is achieved under the worst case, which guarantees the model’s fairness on test data. We further develop two algorithms to handle sample selection bias when test data is both available and unavailable.more » « less
-
Many set selection and ranking algorithms have recently been enhanced with diversity constraints that aim to explicitly increase representation of historically disadvantaged populations, or to improve the over-all representativeness of the selected set. An unintended consequence of these constraints, however, is reduced in-group fairness: the selected candidates from a given group may not be the best ones, and this unfairness may not be well-balanced across groups. In this paper we study this phenomenon using datasets that comprise multiple sensitive attributes. We then introduce additional constraints, aimed at balancing the in-group fairness across groups, and formalize the induced optimization problems as integer linear programs. Using these programs, we conduct an experimental evaluation with real datasets, and quantify the feasible trade-offs between balance and overall performance in the presence of diversity constraints.more » « less
-
Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not.more » « less
An official website of the United States government

