skip to main content

Title: Dirac neutrinos and N eff . Part II. The freeze-in case
Abstract We discuss Dirac neutrinos whose right-handed component ν R has new interac­tions that may lead to a measurable contribution to the effective number of relativistic neutrino species N eff . We aim at a model-independent and comprehensive study on a variety of possibilities. Processes for ν R -genesis from decay or scattering of thermal species, with spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and analytically the contribution of ν R to N eff primarily in the freeze-in regime, since the freeze-out regime has been studied before. While our approximate analytical results apply only to freeze-in, our numerical calculations work for freeze-out as well, including the transition between the two regimes. Using current and future constraints on N eff , we obtain limits and sensitivities of CMB experiments on masses and couplings of the new interactions. As a by-product, we obtain the contribution of Higgs-neutrino interactions, Δ N eff SM ≃ 7.5 × 10 -12 , assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism.
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We present a method to determine the leading-order (LO) contact term contributing to the nn → ppe − e − amplitude through the exchange of light Majorana neutrinos. Our approach is based on the representation of the amplitude as the momentum integral of a known kernel (proportional to the neutrino propagator) times the generalized forward Compton scattering amplitude n ( p 1 ) n ( p 2 ) W + ( k ) → $$ p\left({p}_1^{\prime}\right)p\left({p}_2^{\prime}\right){W}^{-}(k) $$ p p 1 ′ p p 2 ′ W − k , in analogy to the Cottingham formula for the electromagnetic contribution to hadron masses. We construct model-independent representations of the integrand in the low- and high-momentum regions, through chiral EFT and the operator product expansion, respectively. We then construct a model for the full amplitude by interpolating between these two regions, using appropriate nucleon factors for the weak currents and information on nucleon-nucleon ( NN ) scattering in the 1 S 0 channel away from threshold. By matching the amplitude obtained in this way to the LO chiral EFT amplitude we obtain the relevant LO contact term and discuss various sources of uncertainty. We validate the approach by computing themore »analog I = 2 NN contact term and by reproducing, within uncertainties, the charge-independence-breaking contribution to the 1 S 0 NN scattering lengths. While our analysis is performed in the $$ \overline{\mathrm{MS}} $$ MS ¯ scheme, we express our final result in terms of the scheme-independent renormalized amplitude $$ {\mathcal{A}}_{\nu}\left(\left|\mathbf{p}\right|,\left|\mathbf{p}^{\prime}\right|\right) $$ A ν p p ′ at a set of kinematic points near threshold. We illustrate for two cutoff schemes how, using our synthetic data for $$ {\mathcal{A}}_{\nu } $$ A ν , one can determine the contact-term contribution in any regularization scheme, in particular the ones employed in nuclear-structure calculations for isotopes of experimental interest.« less
  2. A bstract The exchange of a pair of neutrinos with Standard Model weak interactions generates a long-range force between fermions. The associated potential is extremely feeble, ∝ $$ {G}_F^2/{r}^5 $$ G F 2 / r 5 for massless neutrinos, which renders it far from observable even in the most sensitive experiments testing fifth forces. The presence of a neutrino background has been argued to induce a correction to the neutrino propagator that enhances the potential by orders of magnitude. In this brief note, we point out that such modified propagators are invalid if the background neutrino wavepackets have a finite width. By reevaluating the 2- ν exchange potential in the presence of a neutrino background including finite width effects, we find that the background-induced enhancement is reduced by several orders of magnitude. Unfortunately, this pushes the resulting 2- ν exchange potential away from present and near-future sensitivity of tests of new long-range forces.
  3. Abstract Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams 1 . The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon 2 . Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, F A , can be measured from neutrino scattering from free nucleons, ν μ n  →  μ − p and $${\bar{\nu }}_{\mu }p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n , as a function of the negative four-momentum transfer squared ( Q 2 ). Up to now, F A ( Q 2 ) has been extracted from the bound nucleons in neutrino–deuterium scattering 3–9 , which requires uncertain nuclear corrections 10 . Here we report the first high-statistics measurement, to our knowledge, of the $${\bar{\nu }}_{\mu }\,p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n cross-section from the hydrogen atom, using the plastic scintillatormore »target of the MINERvA 11 experiment, extracting F A from free proton targets and measuring the nucleon axial charge radius, r A , to be 0.73 ± 0.17 fm. The antineutrino–hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations 12–15 . Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments 16–20 to better constrain neutrino interaction models.« less
  4. Abstract

    We present a toy model for the thermal optical/UV/X-ray emission from tidal disruption events (TDEs). Motivated by recent hydrodynamical simulations, we assume that the debris streams promptly and rapidly circularize (on the orbital period of the most tightly bound debris), generating a hot quasi-spherical pressure-supported envelope of radiusRv∼ 1014cm (photosphere radius ∼1015cm) surrounding the supermassive black hole (SMBH). As the envelope cools radiatively, it undergoes Kelvin–Helmholtz contractionRvt−1, its temperature risingTefft1/2while its total luminosity remains roughly constant; the optical luminosity decays asνLνRv2Tefft3/2. Despite this similarity to the mass fallback rateṀfbt5/3, envelope heating from fallback accretion is subdominant compared to the envelope cooling luminosity except near optical peak (where they are comparable). Envelope contraction can be delayed by energy injection from accretion from the inner envelope onto the SMBH in a regulated manner, leading to a late-time flattening of the optical/X-ray light curves, similar to those observed in some TDEs. Eventually, as the envelope contracts to near the circularization radius, the SMBH accretion rate rises to its maximum, in tandem with the decreasing optical luminosity. This cooling-induced (rather than circularization-induced) delay of up to several hundred days may account for themore »delayed onset of thermal X-rays, late-time radio flares, and high-energy neutrino generation, observed in some TDEs. We compare the model predictions to recent TDE light-curve correlation studies, finding both agreement and points of tension.

    « less
  5. Abstract

    Recently, the Hydrogen Epoch of Reionization Array (HERA) has produced the experiment’s first upper limits on the power spectrum of 21 cm fluctuations atz∼ 8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization from these limits. We find that the IGM must have been heated above the adiabatic-cooling threshold byz∼ 8, independent of uncertainties about IGM ionization and the radio background. Combining HERA limits with complementary observations constrains the spin temperature of thez∼ 8 neutral IGM to 27 KT¯S630 K (2.3 KT¯S640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the cosmic microwave background dominates thez∼ 8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones. Thez∼ 10 limits require even earlier heating if dark-matter interactions cool the hydrogen gas. If an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-raymore »luminosities ofLr,ν/SFR > 4 × 1024W Hz−1M1yr andLX/SFR < 7.6 × 1039erg s−1M1yr. The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent Experiment to Detect the Global EOR Signature (EDGES) measurement. The framework described here provides a foundation for the interpretation of future HERA results.

    « less