skip to main content


Title: Vibration Analysis of a Piezoelectric Ultrasonic Atomizer to Control Atomization Rate
In this work, a mechanical vibrational analysis of an ultrasonic atomizer is carried out to control its atomization mass transfer rate. An ultrasonic atomizer is a device constructed with a piezoelectric ring coupled to a metallic circular thin plate with micro-apertures. The mechanism of mass transfer by atomization is a complex phenomenon to model because of the coupling effect between the fluid transfer and dynamic mechanics controlled by a piezoelectric vibrating ring element. Here, the effect of the micro-apertures shape of the meshed thin plate coupled to a piezoelectric ring during vibration, as well as the resonance frequency modes, are numerically studied using a finite element analysis and compared with theoretical and experimental results. Good correlations between the predicted and experimental results of the resonant frequencies and atomization rates were found.  more » « less
Award ID(s):
1762530
NSF-PAR ID:
10337846
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
11
Issue:
18
ISSN:
2076-3417
Page Range / eLocation ID:
8350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study the enhanced atomization of viscous liquids by employing a novel two-fluid atomizer. The nozzle establishes a countercurrent flow configuration in which the gas and liquid are directed in opposite directions, establishing a two-phase mixing layer. Detailed measurements of droplet size distributions were carried out using laser shadowgraphy, along with high speed flow visualization. The measurements suggest that the liquid emerges as a spray with little further secondary atomization. The performance of this nozzle is compared to the ‘flow-blurring’ nozzle studied by other investigators for four test liquids of viscosity ranging from 1 to 133.5 mPa.s. The counterflow nozzle produces a spray whose characteristics are relatively insensitive to fluid viscosity over the range studied, for gas-liquid mass flow ratios between 0.25 and 1. To gain insight into the mixing process inside the nozzle, simulations are carried out using an Eulerian-Eulerian Volume of Fluid (VoF) approach for representative experimental conditions. The simulation reveals the detailed process of self-sustained flow oscillations and the physical mechanism that generate liquid filaments and final droplets. 
    more » « less
  2. Introduction: The mechanical stability of an atheroma fibrous cap (FC) is a crucial factor for the risk of heart attack or stroke in asymptomatic vulnerable plaques. Common determinants of plaque vulnerability are the cap thickness and the presence of micro-calcifications (µCalcs). Higher local stresses have been linked to thin caps(<65µm) and, more recently, our lab demonstrated how µCalcs can potentially initiate cap rupture [1-3]. When combined, these two factors can compromise to a greater extent the stability of the plaque. On this basis, we quantitatively analyzed both individual and combined effects of key determinants of plaque rupture using a tissue damage model on idealized atherosclerotic arteries. Our results were then tested against a diseased human coronary sample. Methods: We performed 28 finite element simulations on three-dimensional idealized atherosclerotic arteries and a human coronary sample. The idealized models present 10% lumen narrowing and 1.25 remodeling index (RI)(Fig.1A). The FC thickness values that we considered were of 50, 100, 150 and 200µm. The human coronary presents a RI=1.31, with 31% lumen occlusion and a 140µm-thick cap(Fig.1B). The human model is based on 6.7μm high-resolution microcomputed tomography (HR-μCT) images. The µCalc has a diameter of 15µm and each artery was expanded up to a systolic pressure of 120mmHg. Layer-specific material properties were de-fined by the HGO model coupled with the hyperelastic failure description proposed by Volokh et al. [4] to repli-cate the rupture of the FC. We considered a max. princi-pal stress for rupture of 545kPa[5]. The lipid core and the µCalc were considered as elastic materials (Ecore = 5kPa, νcore = 0.49; EµCalc= 18,000 kPa, νµCalc=0.3). To obtain a detailed analysis of the cap stresses and rupture progres-sion, a sub-modeling approach was implemented using ABAQUS (Dassault Systemes, v.2019) (Fig. 1). Results: We investigated the quantitative effect of cap thickness and µCalc by simulating tissue failure and de-riving a vulnerability index (VI) for each risk factor. The VI coefficient was defined as the peak cap stress (PCS) normalized by the threshold stress for rupture (545kPa). The relationship between the risk factors and VI was de-termined by deriving the Pearson’s correlation coefficient (PCC) followed by one-tailed t-test (SPSS, IBM, v.25). The null hypothesis was rejected if p<0.05. The presence of the µCalc is the factor that manifests the greater impact on cap stability, leading to at least a 2.5-fold increase in VI and tissue rupture regardless of cap thickness (Fig.2A,B). One µCalc in the cap is the first predictor of vulnerability, with PCCµCalc=0.59 and pµCalc=0.001. Our results also confirm the substantial in-fluence of cap thickness, with an exponential increase in stresses as the cap becomes thinner. The 50µm cap is the only phenotype that ruptures without µCalc (Fig2A). The human sample exhibits PCS levels that are close to the idealized case with 150µm cap and it doesn’t rupture in the absence of the µCalc (PCShuman=233kPa, PCSideal= 252kPa). Conversely, the phenotypes with the µCalc showed an increase in VI of about 2.5 and reached rup-ture under the same blood pressure regime. Conclusions: Our results clearly show the multifactorial nature of plaque vulnerability and the significance of micro-calcifications on the cap mechanical stability. The presence of a μCalc strongly amplifies the stresses in the surrounding tissue, and it can provoke tissue failure even in thick caps that would otherwise be classified as stable. Clearly, plaque phenotypes with a thin cap and μCalcs in the tissue represent the most vulnerable condition. Finally, these observations are well validated by the case of the human atherosclerotic segment, which closely compares to its corresponding idealized model. The novel imple-mentation of the tissue damage description and the defi-nition of a vulnerability index allow one to quantitatively analyze the individual and combined contribution of key determinants of cap rupture, which precedes the for-mation of a thrombus and myocardial infarction. 
    more » « less
  3. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less
  4. A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design. 
    more » « less
  5. One of the fundamental issues in the Fused Filament Fabrication (FFF) additive manufacturing process lies in the mechanical property anisotropy where the strength of the FFF-3D printed part in the build-direction can be significantly lower than that in other directions. The physical phenomenon that governs this issue is the coupled effect of macroscopic thermal mechanical issues associated with the thermal history of the interface, and the microscopic effect of the polymer microstructure and mass transfer across interfaces. In this study it was found that the use of 34.4 kHz ultrasonic vibrations during FFF-3D printing results in an increase of up to 10% in the interlayer adhesion in Acrylonitrile Butadiene Styrene (ABS), comparing the printing in identical thermal conditions to that in conventional FFF printing. This increase in the interlayer adhesion strength is attributed to the increase in polymer reptation due to ultrasonic vibration-induced relaxation of the polymer chains from secondary interactions in the interface regions. 
    more » « less