skip to main content


Title: Hardware implementation of Bayesian network based on two-dimensional memtransistors
Abstract Bayesian networks (BNs) find widespread application in many real-world probabilistic problems including diagnostics, forecasting, computer vision, etc. The basic computing primitive for BNs is a stochastic bit (s-bit) generator that can control the probability of obtaining ‘1’ in a binary bit-stream. While silicon-based complementary metal-oxide-semiconductor (CMOS) technology can be used for hardware implementation of BNs, the lack of inherent stochasticity makes it area and energy inefficient. On the other hand, memristors and spintronic devices offer inherent stochasticity but lack computing ability beyond simple vector matrix multiplication due to their two-terminal nature and rely on extensive CMOS peripherals for BN implementation, which limits area and energy efficiency. Here, we circumvent these challenges by introducing a hardware platform based on 2D memtransistors. First, we experimentally demonstrate a low-power and compact s-bit generator circuit that exploits cycle-to-cycle fluctuation in the post-programmed conductance state of 2D memtransistors. Next, the s-bit generators are monolithically integrated with 2D memtransistor-based logic gates to implement BNs. Our findings highlight the potential for 2D memtransistor-based integrated circuits for non-von Neumann computing applications.  more » « less
Award ID(s):
2042154 2039351
NSF-PAR ID:
10388512
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As the energy and hardware investments necessary for conventional high‐precision digital computing continue to explode in the era of artificial intelligence (AI), a change in paradigm that can trade precision for energy and resource efficiency is being sought for many computing applications. Stochastic computing (SC) is an attractive alternative since, unlike digital computers, which require many logic gates and a high transistor volume to perform basic arithmetic operations such as addition, subtraction, multiplication, sorting, etc., SC can implement the same using simple logic gates. While it is possible to accelerate SC using traditional silicon complementary metal–oxide–semiconductor (CMOS) technology, the need for extensive hardware investment to generate stochastic bits (s‐bits), the fundamental computing primitive for SC, makes it less attractive. Memristor and spin‐based devices offer natural randomness but depend on hybrid designs involving CMOS peripherals for accelerating SC, which increases area and energy burden. Here, the limitations of existing and emerging technologies are overcome, and a standalone SC architecture embedded in memory and based on 2D memtransistors is experimentally demonstrated. The monolithic and non‐von‐Neumann SC architecture occupies a small hardware footprint and consumes a miniscule amount of energy (<1 nJ) for both s‐bit generation and arithmetic operations, highlighting the benefits of SC.

     
    more » « less
  2. Abstract Artificial neural networks have demonstrated superiority over traditional computing architectures in tasks such as pattern classification and learning. However, they do not measure uncertainty in predictions, and hence they can make wrong predictions with high confidence, which can be detrimental for many mission-critical applications. In contrast, Bayesian neural networks (BNNs) naturally include such uncertainty in their model, as the weights are represented by probability distributions (e.g. Gaussian distribution). Here we introduce three-terminal memtransistors based on two-dimensional (2D) materials, which can emulate both probabilistic synapses as well as reconfigurable neurons. The cycle-to-cycle variation in the programming of the 2D memtransistor is exploited to achieve Gaussian random number generator-based synapses, whereas 2D memtransistor based integrated circuits are used to obtain neurons with hyperbolic tangent and sigmoid activation functions. Finally, memtransistor-based synapses and neurons are combined in a crossbar array architecture to realize a BNN accelerator for a data classification task. 
    more » « less
  3. Hardware Trojans (HTs) have emerged as a major security threat for integrated circuits (ICs) owing to the involvement of untrustworthy actors in the globally distributed semiconductor supply chain. HTs are intentional malicious modifications, which remain undetectable through simple electrical measurements but can cause catastrophic failure in the functioning of ICs in mission critical applications. In this article, we show how two-dimensional (2D) material based in-memory computing elements such as memtransistors can be used as hardware Trojans. We found that logic gates based on 2D memtransistors can be made to malfunction by exploiting their inherent programming capabilities. While we use 2D memtransistor-based ICs as the testbed for our demonstration, the results are equally applicable to any state-of-the-art and emerging in-memory computing technologies. 
    more » « less
  4. Abstract

    The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that information in the brain is more often represented by explicit firing times of the neurons rather than mean firing rates, it is imperative to develop novel hardware that can accelerate sparse and spike‐timing‐based encoding. Here a medium‐scale integrated circuit composed of two cascaded three‐stage inverters and one XOR logic gate fabricated using a total of 21 memtransistors based on photosensitive 2D monolayer MoS2 for spike‐timing‐based encoding of visual information, is introduced. It is shown that different illumination intensities can be encoded into sparse spiking with time‐to‐first‐spike representing the illumination information, that is, higher intensities invoke earlier spikes and vice versa. In addition, non‐volatile and analog programmability in the photoencoder is exploited for adaptive photoencoding that allows expedited spiking under scotopic (low‐light) and deferred spiking under photopic (bright‐light) conditions, respectively. Finally, low energy expenditure of less than 1 µJ by the 2D‐memtransistor‐based photoencoder highlights the benefits of in‐sensor and bioinspired design that can be transformative for the acceleration of SNNs.

     
    more » « less
  5. A low-energy hardware implementation of deep belief network (DBN) architecture is developed using near-zero energy barrier probabilistic spin logic devices (p-bits), which are modeled to real- ize an intrinsic sigmoidal activation function. A CMOS/spin based weighted array structure is designed to implement a restricted Boltzmann machine (RBM). Device-level simulations based on precise physics relations are used to validate the sigmoidal relation between the output probability of a p-bit and its input currents. Characteristics of the resistive networks and p-bits are modeled in SPICE to perform a circuit-level simulation investigating the performance, area, and power consumption tradeoffs of the weighted array. In the application-level simulation, a DBN is implemented in MATLAB for digit recognition using the extracted device and circuit behavioral models. The MNIST data set is used to assess the accuracy of the DBN using 5,000 training images for five distinct network topologies. The results indicate that a baseline error rate of 36.8% for a 784x10 DBN trained by 100 samples can be reduced to only 3.7% using a 784x800x800x10 DBN trained by 5,000 input samples. Finally, Power dissipation and accuracy tradeoffs for probabilistic computing mechanisms using resistive devices are identified. 
    more » « less