skip to main content


Title: Magnetic and Magnetoelectric Properties of AurivilliusThree- and Four-Layered Intergrowth Ceramics
In this work, we have prepared intergrowth of multiferroic compounds namely Bi4RTi3Fe0.7Co0.3O15-Bi3RTi2Fe0.7Co0.3O12−δ (BRTFCO15-BRTFCO12) (rare earth (R) = Dy, Sm, La) by solid-state reaction method. From the X-ray diffraction Rietveld refinement, the structure of the intergrowths was found to be orthorhombic in which satisfactory fittings establish the existence of three-layered (space group: b 2 c b) and four-layered compounds (space group: A21am). Analysis of magnetic measurements confirmed a larger magnetization for theSm-modified intergrowth compound (BSTFCO15-BSTFCO12) compared to Dy- and La-doped ones. The emergence of higher magnetic properties can be due to distortion in the unit cell when some Bi3+ ions are replaced with the Sm3+, bonding of Fe3+-O-Co3+ as well as a possible mixture of FexCoy-type nanoparticles that are formed generally in the synthesis of intergrowths. The changes in the magnetic state of the Aurivillius intergrowths have been reflected in the magnetoelectric (ME) coupling: higher ME coefficient (~30 mV/Cm-Oe) at lower magnetic fields and is constant up to 3 kOe. The results were corroborated by Raman spectroscopy and variation of temperature with magnetization data. The results revealed that the RE-modified intergrowth route is an effective preparative method for higher-layer Aurivillius multiferroic ceramics.  more » « less
Award ID(s):
1923732 1808892
NSF-PAR ID:
10421877
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
13
Issue:
3
ISSN:
2073-4352
Page Range / eLocation ID:
426
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of dysprosium( iii ) metallocenium salts, [Dy(Cp iPr4R ) 2 ][B(C 6 F 5 ) 4 ] (R = H ( 1 ), Me ( 2 ), Et ( 3 ), iPr ( 4 )), was synthesized by reaction of DyI 3 with the corresponding known NaCp iPr4R (R = H, iPr) and novel NaCp iPr4R (R = Me, Et) salts at high temperature, followed by iodide abstraction with [H(SiEt 3 ) 2 ][B(C 6 F 5 ) 4 ]. Variation of the substituents in this series results in substantial changes in molecular structure, with more sterically-encumbering cyclopentadienyl ligands promoting longer Dy–C distances and larger Cp–Dy–Cp angles. Dc and ac magnetic susceptibility data reveal that these structural changes have a considerable impact on the magnetic relaxation behavior and operating temperature of each compound. In particular, the magnetic relaxation barrier increases as the Dy–C distance decreases and the Cp–Dy–Cp angle increases. An overall 45 K increase in the magnetic blocking temperature is observed across the series, with compounds 2–4 exhibiting the highest 100 s blocking temperatures yet reported for a single-molecule magnet. Compound 2 possesses the highest operating temperature of the series with a 100 s blocking temperature of 62 K. Concomitant increases in the effective relaxation barrier and the maximum magnetic hysteresis temperature are observed, with 2 displaying a barrier of 1468 cm −1 and open magnetic hysteresis as high as 72 K at a sweep rate of 3.1 mT s −1 . Magneto-structural correlations are discussed with the goal of guiding the synthesis of future high operating temperature Dy III metallocenium single-molecule magnets. 
    more » « less
  2. In this work, the local structures of durable, high-activity Bi 4 TaO 8 Cl–Bi 2 GdO 4 Cl intergrowth photocatalysts that were prepared in a molten flux are determined by pair distribution function analysis of X-ray total scattering data and correlated to their photocatalytic performance. This system gives understanding to how the local structure of photocatalysts can be manipulated controllably through incorporation of rigid and flexible layers via intergrowth formation to achieve high activity. This analysis revealed that the local symmetry and distortion of the [TaO 6 ] octahedra introduced through intergrowth formation and dictated by intergrowth stoichiometry correlate with their photocatalytic activity. That is, the greater the Ta–O–Ta bond angles, the higher the photocatalytic activity of a given intergrowth for the oxygen evolution reaction. Moreover, greater tilting of the [TaO 6 ] octahedra is associated with a larger band gap. This analysis was coupled with a structure mining approach to model the intergrowth structure by building supercells for refinement of the X-ray diffraction data. This analysis found that Ta- and Gd-domains are separated within the intergrowths, with large Gd-domains separated by small Ta-domains at high Gd% and the opposite for high Ta%. Taken together with Williamson–Hall analysis, our results highlight that the local structure of layered materials can be modulated through strain engineering enabled by the selection of rigid and flexible intergrowth layers, providing a new design pathway to high performance photocatalysts. 
    more » « less
  3. The intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. A synthesis temperature of 850 K was selected based on in situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). The LiMnBi structure is built of alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic property measurements and solid-state 7Li nuclear magnetic resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of the Mn sublattice at ∼340 K, with no superconductivity detected down to 5 K. LiMnBi is air- and water-sensitive. Under aerobic conditions, Li can be extracted from the LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi or from the structurally related CaMn2Bi2. Such a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and a favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogues is unfavorably long. The studies of delithiation from layered-like LiMnBi under different chemical environments indicate that the yield of MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ∼50% of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds. 
    more » « less
  4. Abstract

    Programming magnetic fields with microscale control can enable automation at the scale of single cells ≈10 µm. Most magnetic materials provide a consistent magnetic field over time but the direction or field strength at the microscale is not easily modulated. However, magnetostrictive materials, when coupled with ferroelectric material (i.e., strain‐mediated multiferroics), can undergo magnetization reorientation due to voltage‐induced strain, promising refined control of magnetization at the micrometer‐scale. This work demonstrates the largest single‐domain microstructures (20 µm) of Terfenol‐D (Tb0.3Dy0.7Fe1.92), a material that has the highest magnetostrictive strain of any known soft magnetoelastic material. These Terfenol‐D microstructures enable controlled localization of magnetic beads with sub‐micrometer precision. Magnetically labeled cells are captured by the field gradients generated from the single‐domain microstructures without an external magnetic field. The magnetic state on these microstructures is switched through voltage‐induced strain, as a result of the strain‐mediated converse magnetoelectric effect, to release individual cells using a multiferroic approach. These electronically addressable micromagnets pave the way for parallelized multiferroics‐based single‐cell sorting under digital control for biotechnology applications.

     
    more » « less
  5. Abstract

    Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.

     
    more » « less