Polyatomic molecules have been identified as sensitive probes of chargeparity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both lasercoolable and have parity doublets in the ground electronic
This content will become publicly available on January 30, 2025
We combine synchrotronbased infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and firstprinciples calculations to explore the properties of hafnia under compression. We find that pressure drives HfO
 Award ID(s):
 1954856
 NSFPAR ID:
 10499932
 Publisher / Repository:
 National Academy of Sciences
 Date Published:
 Journal Name:
 Proceedings of the National Academy of Sciences
 Volume:
 121
 Issue:
 5
 ISSN:
 00278424
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ YbOH using highresolution optical spectroscopy on the nominally forbidden ${}^{174}$ $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the $\to \tilde{A}{}^{2}{\mathrm{\Pi}}_{1/2}(000)$ state, and accurately model the state’s structure with an effective Hamiltonian using bestfit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ state and fit the moleculeframe dipole moment to $\tilde{X}{}^{2}{\mathrm{\Sigma}}^{+}(010)$ ${D}_{\mathrm{m}\mathrm{o}\mathrm{l}}=2.16(1)$D and the effective electrong factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited ${g}_{S}=2.07(2)$ state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. $\tilde{A}{}^{2}{\mathrm{\Pi}}_{1/2}(000)$ 
Abstract In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggard
et al (2016Ann. Henri Poincaré 17 2001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure condition , ${M}_{4}{M}_{3}{M}_{2}{M}_{1}=1$ , for the homogeneously curved tetrahedron. The quantum group ${M}_{\nu}\in \mathrm{SU}(2)$ emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4valent intertwiners of ${U}_{q}(\mathfrak{su}(2))$ . In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual LoopQuantumGravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory. ${U}_{q}(\mathfrak{su}(2))$ 
Abstract Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi2D)^{3}HeA consists of branches of chiral edge states. The negative energy states are related to the groundstate angular momentum,
, for ${L}_{z}=(N/2)\hslash $ Cooper pairs. The power law suppression of the angular momentum, $N/2$ for ${L}_{z}(T)\simeq (N/2)\hslash [1\frac{2}{3}(\pi T/\mathrm{\Delta}{)}^{2}]$ , in the fully gapped 2D chiral Aphase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, groundstate angular momentum and groundstate order parameter of superfluid^{3}He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry at $0\u2a7dT\ll {T}_{c}$ . The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement length ${D}_{c2}\sim 16{\xi}_{0}$ . The PDW phase breaks timereversal symmetry, translation invariance, but is invariant under the combination of timereversal and translation by a onehalf period of the PDW. The mass current distribution of the PDW phase reflects this combined symmetry, and originates from the spectra of edge Fermions and the chiral branches bound to the domain walls. Under sufficiently strong confinement a secondorder transition occurs to the nonchiral ‘polar phase’ at $D\to {D}_{{c}_{2}}$ , in which a single pwave orbital state of Cooper pairs is aligned along the channel. ${D}_{c1}\sim 9{\xi}_{0}$ 
Abstract One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
z axis) with frequencyω _{0}due to absorption of lowpower microwaves of frequencyω _{0}under the resonance conditions and in the absence of any applied bias voltage. The twodecadesold ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector ${I}^{{S}_{z}}$ is timeindependent while $({I}^{{S}_{x}}(t),{I}^{{S}_{y}}(t),{I}^{{S}_{z}})\propto {\omega}_{0}$ and ${I}^{{S}_{x}}(t)$ oscillate harmonically in time with a single frequency ${I}^{{S}_{y}}(t)$ω _{0}whereas pumped charge current is zero in the same adiabatic $I\equiv 0$ limit. Here we employ more general approaches than the ‘standard model’, namely the timedependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin $\propto {\omega}_{0}$ and charge ${I}^{{S}_{\alpha}}(t)$I (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequency $N{\omega}_{0}$ω _{0}. The cutoff order of such high harmonics increases with SOC strength, reaching in the onedimensional FM or AFM models chosen for demonstration. A higher cutoff ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 11$ can be achieved in realistic twodimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures. ${N}_{\mathrm{m}\mathrm{a}\mathrm{x}}\simeq 25$ 
Abstract We present^{13}CO(
J = 1 → 0) observations for the EDGECALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected^{12}CO emission as a prior, we detect^{13}CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher ${\mathit{\ue23e}}_{12/13}\equiv I{[}^{12}\mathrm{CO}(J=1\to 0)]/I{[}^{13}\mathrm{CO}(J=1\to 0)]$ values are found in interacting galaxies compared to those in noninteracting galaxies. The global ${\mathit{\ue23e}}_{12/13}$ slightly increases with infrared color ${\mathit{\ue23e}}_{12/13}$F _{60}/F _{100}but appears insensitive to other hostgalaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4 ${\mathit{\ue23e}}_{12/13}$r _{25}(∼6 kpc), taking into account the^{13}CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2 ${\mathit{\ue23e}}_{12/13}$r _{25}, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged ${\mathit{\ue23e}}_{12/13}$ does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2 ${\mathit{\ue23e}}_{12/13}$r _{25}from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on ${\mathit{\ue23e}}_{12/13}$ , which further complicates the interpretations of ${\mathit{\ue23e}}_{12/13}$ variations. ${\mathit{\ue23e}}_{12/13}$