skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data assimilation experiments inform monitoring needs for near‐term ecological forecasts in a eutrophic reservoir
Abstract Ecosystems around the globe are experiencing changes in both the magnitude and fluctuations of environmental conditions due to land use and climate change. In response, ecologists are increasingly using near‐term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near‐term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost‐prohibitive or impossible for forecasting ecological variables that lack high‐frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used in situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using Forecasting Lake and Reservoir Ecosystems (FLARE), an open source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1‐ to 35‐day‐ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1‐day‐ahead forecast root mean square error (RMSE) of 0.81°C, mean 7‐day RMSE of 1.15°C, and mean 35‐day RMSE of 1.94°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1‐ to 7‐day‐ahead horizons, but weekly data assimilation resulted in the most skillful forecasts at 8‐ to 35‐day‐ahead horizons. Within a year, forecasts with weekly data assimilation consistently outperformed forecasts with daily data assimilation after the 8‐day forecast horizon during mixed spring/autumn periods and 5‐ to 14‐day‐ahead horizons during the summer‐stratified period, depending on depth. Our results suggest that lower frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high‐frequency sensor data.  more » « less
Award ID(s):
1933016 1753639 1926050 2004323 2004441 1933102 2327030
PAR ID:
10518440
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ESA
Date Published:
Journal Name:
Ecosphere
Volume:
15
Issue:
2
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Near‐term, iterative ecological forecasts can be used to help understand and proactively manage ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other ecosystems worldwide, likely motivated by the pressing need to conserve these essential and threatened ecosystems and increasing the availability of high‐frequency data. Forecasters have implemented many different modeling approaches to forecast freshwater variables, which have demonstrated promise at individual sites. However, a comprehensive analysis of the performance of varying forecast models across multiple sites is needed to understand broader controls on forecast performance. Forecasting challenges (i.e., community‐scale efforts to generate forecasts while also developing shared software, training materials, and best practices) present a useful platform for bridging this gap to evaluate how a range of modeling methods perform across axes of space, time, and ecological systems. Here, we analyzed forecasts from the aquatics theme of the National Ecological Observatory Network (NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000 probabilistic forecasts of water temperature and dissolved oxygen concentration for 1–30 days ahead across seven NEON‐monitored lakes were submitted in 2023. We assessed how forecast performance varied among models with different structures, covariates, and sources of uncertainty relative to baseline null models. A similar proportion of forecast models were skillful across both variables (34%–40%), although more individual models outperformed the baseline models in forecasting water temperature (10 models out of 29) than dissolved oxygen (6 models out of 15). These top performing models came from a range of classes and structures. For water temperature, we found that forecast skill degraded with increases in forecast horizons, process‐based models, and models that included air temperature as a covariate generally exhibited the highest forecast performance, and that the most skillful forecasts often accounted for more sources of uncertainty than the lower performing models. The most skillful forecasts were for sites where observations were most divergent from historical conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting Challenge provides an exciting opportunity for a model intercomparison to learn about the relative strengths of a diverse suite of models and advance our understanding of freshwater ecosystem predictability. 
    more » « less
  2. Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning has great promise for improving our understanding of ecological processes and the predictive skill of ecological models, but to date has been infrequently applied to predict biogeochemical fluxes. Bubble fluxes of methane (CH 4 ) from aquatic sediments to the atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains unknown how best to make robust near-term CH 4 ebullition predictions using models. Near-term forecasting workflows have the potential to address several current challenges in predicting CH 4 ebullition rates, including: development of models that can be applied across time horizons and ecosystems, identification of the timescales for which predictions can provide useful information, and quantification of uncertainty in predictions. To assess the capacity of near-term, iterative forecasting workflows to improve ebullition rate predictions, we developed and tested a near-term, iterative forecasting workflow of CH 4 ebullition rates in a small eutrophic reservoir throughout one open-water period. The workflow included the repeated updating of a CH 4 ebullition forecast model over time with newly-collected data via iterative model refitting. We compared the CH 4 forecasts from our workflow to both alternative forecasts generated without iterative model refitting and a persistence null model. Our forecasts with iterative model refitting estimated CH 4 ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead = 0.53 and 0.48 log e (mg CH 4 m −2 d −1 ) at 2-week ahead horizons]. Forecasts with iterative model refitting outperformed forecasts without refitting and the persistence null model at both 1- and 2-week forecast horizons. Driver uncertainty and model process uncertainty contributed the most to total forecast uncertainty, suggesting that future workflow improvements should focus on improved mechanistic understanding of CH 4 models and drivers. Altogether, our study suggests that iterative forecasting improves week-to-week CH 4 ebullition predictions, provides insight into predictability of ebullition rates into the future, and identifies which sources of uncertainty are the most important contributors to the total uncertainty in CH 4 ebullition predictions. 
    more » « less
  3. On average, modern numerical weather prediction forecasts for daily tornado frequency exhibit no skill beyond day 10. However, in this extended-range lead window, there are particular model cycles that have exceptionally high forecast skill for tornadoes because of their ability to correctly simulate the future synoptic pattern. Here, model initial conditions that produced a more skillful forecast for tornadoes over the United States were exploited while also highlighting potential causes for low-skill cycles within the Global Ensemble Forecasting System, version 12 (GEFSv12). There were 88 high-skill and 91 low-skill forecasts in which the verifying day-10 synoptic pattern for tornado conditions revealed a western U.S. thermal trough and an eastern U.S. thermal ridge, a favorable configuration for tornadic storm occurrence. Initial conditions for high skill forecasts tended to exhibit warmer sea surface temperatures throughout the tropical Pacific Ocean and Gulf of Mexico, an active Madden–Julian oscillation, and significant modulation of Earth-relative atmospheric angular momentum. Low-skill forecasts were often initialized during La Niña and negative Pacific decadal oscillation conditions. Significant atmospheric blocking over eastern Russia—in which the GEFSv12 overforecast the duration and characteristics of the downstream flow—was a common physical process associated with low-skill forecasts. This work helps to increase our understanding of the common causes of high- or low-skill extended-range tornado forecasts and could serve as a helpful tool for operational forecasters. 
    more » « less
  4. Abstract Near‐term ecological forecasting can be used to improve operational resource management in freshwater ecosystems. Here, we developed a framework that uses water temperature forecasting as a tool to predict the migrations of Atlantic salmon (Salmo salar) and European eel (Anguilla anguilla) between freshwater and the sea. We used historical observations of lake water temperature and fish migrations from an internationally important long‐term monitoring site (the Burrishoole catchment, Ireland) to generate daily probabilistic predictions (0%–100%) of when relatively large numbers of fish migrate. For this, we produced daily lake water temperature forecasts that extended up to 34 days into the future using Forecasting Lake and Reservoir Ecosystems (FLARE), an open‐source ensemble‐based forecasting system. We used this system to forecast lake water temperature conditions associated with percentile‐based fish migrations. Two metrics, P66 and P95, were used to indicate days with migrations in excess of 66% and 95%, respectively, of the historical daily fish counts. The results were first validated against water temperature observations, with an overall root mean squared error (RMSE) of 0.97°C. Our forecasts outperformed two other possible water temperature forecasting approaches, using site climatology (1.36°C) and site persistence (1.19°C). The predictions for fish migrations performed better for the P66 metric than for the more extreme P95 metric based on the continuous ranked probability score (CRPS), and the best results were obtained for the salmon downstream migration. This forecasting approach with quantified uncertainty levels has the potential to assist decision making, especially in the face of increased risks for these species. We conclude by discussing the scalability of the framework to other settings as a tool aimed at supporting management practices in real time. 
    more » « less
  5. Abstract Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2ndmost accurate model measured by WIS in 2021–22 and the 5thmost accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change. 
    more » « less