skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Dual-Path Transformer-Based Multiband Power Amplifier for mm-Wave 5G Applications
This article presents a dual-band power amplifier for 28 and 39 GHz frequency bands based on a new dual-path transformer (DPT). This DPT can provide two optimum inductive values at two different frequency bands to optimally design the matching networks for each band without using any switch circuitries. It operates as the output and input matching networks in a parallel power combiner and divider, respectively. DPT-based PA breaks the trade-off between bandwidth and performance in conventional wideband PAs by separating one whole wideband into two narrow bands providing optimum input and output matchings for each band. The DPT-based PA has two input and two output ports. One set of input and output ports is dedicated to a lower frequency band and the other set of input and outport ports can be used for a higher frequency band. Each output port can drive a separate antenna in a phased array for each frequency band. The proposed PA prototype is fabricated in a 65 nm CMOS process achieving 15.3 and 14.0 dBm of saturated output power in 28 and 39 GHz. The peak efficiency of the PA is 34.1% and 30.2% at 28 and 39 GHz frequency bands. The PA has a measured EVM with 64-QAM modulated signal in both frequency bands showing −25.03 and −25.10 dB in the low and higher frequency bands, respectively.  more » « less
Award ID(s):
2030159 1955306
PAR ID:
10538248
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Institute of Electrical and Electronics Engineers
Date Published:
Journal Name:
IEEE Journal of Solid-State Circuits
Volume:
59
Issue:
6
ISSN:
0018-9200
Page Range / eLocation ID:
1643 to 1655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a dual-band RF rectifying circuit for wireless power transmission at 1.17 GHz and 2.4 GHz. A dual-band harmonic-tuned inverse-class F/class-F mode power amplifier using a 10 W GaN device has been utilized to implement the proposed rectifier with an on-board coupler and phase shifter. The matching circuit is precisely designed so that the circuit operates in inverse class F and class F mode in the lower and upper frequency bands using dual-band harmonic tuning, respectively. Measurement results show that the rectifier circuit has 78% and 76% efficiencies at 1.17 GHz and 2.4 GHz frequency bands, respectively. To the best of the authors' knowledge, this rectifier is the first demonstration of a dual-band harmonic-tuned synchronous rectifier using a GaN HEMT device with an integrated coupler and phase-shifter for a watt-level RF input power. 
    more » « less
  2. This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. 
    more » « less
  3. This work presents a novel approach for reducing the out-of-band distortion generated in a concurrent dualband power amplifier (PA) without penalty to output power or efficiency using a filter between a driver amplifier and final-stage PA that manipulates the driver amplifier out-of-band distortion such that the overall distortion of the cascade is minimized. The cascaded PA operates at 2.4-GHz and 3.5-GHz with peak output power and drain efficiency of 41.6/40.4 and 65.2/55.1 respectively. The filter reduces the out-of-band distortion of the cascade when excited by dual 10-MHz LTE-like signals by 10 dB while improving average drain efficiency by 5 percentage points. 
    more » « less
  4. null (Ed.)
    The Dedicated Short Range Communications (DSRC) band (5.85-5.925 GHz) allocated for vehicle-to-vehicle (V2V) communication provides limited opportunities for high speed data transfer. Alternatively, FCC plans to allocate millimeter-wave spectrum for 5G V2V communication. In this paper, we present a novel dual-band dual linearly-polarized antenna array for both DSRC and 28 GHz communications. For each band, we optimized antenna gain and number of elements to maximize range and data rate. The designed array has dual linear polarization and is fed with a simple quarter wave transformer. Due to large available connector’s size, a Wilkinson power divider is designed to combine adjacent elements. Infinite array simulation show that the array is well matched (S11 < -10 dB) from 5.85 to 6.48 GHz, and from 17.29 to 29 GHz. The realized gain at both frequency bands is neartheoretical. 
    more » « less
  5. This article introduces an innovative four-port dual-path inductor designed to deliver two distinct inductance values to the resonator of a voltage-controlled oscillator (VCO). The switching between the inductor’s two excitation modes, even and odd, is determined by the differential excitation’s input polarity, eliminating the need for a series switch. Thus, the inductor has a high-quality factor ( Q ) in both modes. The inductances in these modes can be independently set based on desired frequencies. This inductance change achieves coarse frequency tuning, while fine-tuning is realized by a conventional 2-bit capacitor bank with a small-size varactor. This inductor is well suited for designing multiband VCOs aimed at widely spaced operation frequency bands. Apart from the inductance change, a particular case of mode-switching capacitor is employed to extend to another frequency band in between the low and middle bands, achieving triple-band oscillation. As a result, this article presents two VCOs designed using the proposed inductor: one in class-D biasing in a 65-nm CMOS process and another with class-B biasing in a 180-nm BiCMOS process. Both VCOs successfully oscillate across three distinct frequency bands, centered at 19, 28, and 36 GHz, while maintaining outstanding phase noise and minimal power consumption. Measurement results show good match with simulation, resulting in a peak figure of merit (FoM) of 185.7 dBc/Hz at 18.5 GHz, and occupy 0.088- mm2 (250 × 350 μ m) area in both processes. 
    more » « less