Abstract The quantization of gravity is widely believed to result in gravitons – particles of discrete energy that form gravitational waves. But their detection has so far been considered impossible. Here we show that signatures of single graviton exchange can be observed in laboratory experiments. We show that stimulated and spontaneous single-graviton processes can become relevant for massive quantum acoustic resonators and that stimulated absorption can be resolved through continuous sensing of quantum jumps. We analyze the feasibility of observing the exchange of single energy quanta between matter and gravitational waves. Our results show that single graviton signatures are within reach of experiments. In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity.
more »
« less
Detecting kHz gravitons from a neutron star merger with a multi-mode resonant mass detector
Abstract We propose a multi-mode bar consisting of mass elements of decreasing size for the implementation of a gravitational version of the photo-electric effect through the stimulated absorption of up to kHz gravitons from a binary neutron star merger and post-merger. We find that the multi-mode detector has normal modes that retain the coupling strength to the gravitational wave of the largest mass-element, while only having an effective mass comparable to the mass of the smallest element. This allows the normal modes to have graviton absorption rates due to the tonne-scale largest mass, while the single graviton absorption process in the normal mode could be resolved through energy measurements of a mass-element in-principle smaller than pico-gram scale. We argue the feasibility of directly counting gravito-phonons in the bar through energy measurements of the end mass. This improves the transduction of the single-graviton signal, enhancing the feasibility of detecting single gravitons.
more »
« less
- Award ID(s):
- 2239498
- PAR ID:
- 10567917
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- ISSN:
- 0264-9381
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We employ an unregulated computation of the graviton self-energy from gravitons on the de Sitter background to infer the renormalized result. This is used to quantum-correct the linearized Einstein equation. We solve this equation for the potentials that represent the gravitational response to a static, point mass. We find large spatial and temporal logarithmic corrections to the Newtonian potential and to the gravitational shift. Although suppressed by a minuscule loop-counting parameter, these corrections cause perturbation theory to break down at large distances and late times. Another interesting fact is that gravitons induce up to three large logarithms, whereas a loop of massless, minimally coupled scalars produces only a single large logarithm. This is in line with corrections to the graviton mode function: a loop of gravitons induces two large logarithms, whereas a scalar loop gives none.more » « less
-
A<sc>bstract</sc> We consider cosmological aspects of the Dark Dimension (a mesoscopic dimension of micron scale), which has recently been proposed as the unique corner of the quantum gravity landscape consistent with both the Swampland criteria and observations. In particular we show how this leads, by the universal coupling of the Standard Model sector to bulk gravitons, to massive spin 2 KK excitations of the graviton in the dark dimension (the “dark gravitons”) as an unavoidable dark matter candidate. Assuming a lifetime for the current de Sitter phase of our universe of order Hubble, which follows from both the dS Swampland Conjecture and TCC, we show that generic features of the dark dimension cosmology can naturally lead to the correct dark matter density and a resolution of the cosmological coincidence problem, where the matter/radiation equality temperature (T~ 1 eV) coincides with the temperature where the dark energy begins to dominate. Thus one does not need to appeal to Weinberg’s anthropic argument to explain this coincidence. The dark gravitons are produced atT~ 4 GeV, and their composition changes as they mainly decay to lighter gravitons, without losing much total mass density. The mass of dark gravitons ismDM∼ 1 − 100 keV today.more » « less
-
null (Ed.)A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons.more » « less
-
Abstract We perform the first magnetohydrodynamic simulation tracking the magnetosphere of a collapsing magnetar. The collapse is expected for massive rotating magnetars formed in merger events and may occur many hours after the merger. Our simulation suggests a novel mechanism for a gamma-ray burst (GRB), which is uncollimated and forms a delayed high-energy counterpart of the merger gravitational waves. The simulation shows that the collapse launches an outgoing magnetospheric shock, and a hot magnetized outflow forms behind the shock. The outflow is baryon free and uncollimated, and its power peaks on a millisecond timescale. Then, the outflow becomes modulated by the ring-down of the nascent black hole, imprinting its kilohertz quasi-normal modes on the GRB tail.more » « less
An official website of the United States government
