- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources7
- Resource Type
-
0007000000000000
- More
- Availability
-
70
- Author / Contributor
- Filter by Author / Creator
-
-
Khurana, Dakshita (7)
-
Bartusek, James (2)
-
Ishai, Yuval (2)
-
Malavolta, Giulio (2)
-
Sahai, Amit (2)
-
Srinivasan, Akshayaram (2)
-
Agarwal, Amit (1)
-
Alamati, Navid (1)
-
Goyal, Vipul (1)
-
Jawale, Ruta (1)
-
Raghuraman, Srinivasan (1)
-
Raizes, Justin (1)
-
Rindal, Peter (1)
-
Roberts, Bhaskar (1)
-
Srinivasan, Akshay (1)
-
Tomer, Kabir (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bartusek, James; Goyal, Vipul; Khurana, Dakshita; Malavolta, Giulio; Raizes, Justin; Roberts, Bhaskar (, Lecture Notes in Computer Science (Eurocrypt 2024))
-
Khurana, Dakshita; Malavolta, Giulio; Tomer, Kabir (, ASIACRYPT 2023)
-
Agarwal, Amit; Alamati, Navid; Khurana, Dakshita; Raghuraman, Srinivasan; Rindal, Peter (, TCC 2023)We study verifiable outsourcing of computation in a model where the verifier has black-box access to the function being computed. We introduce the problem of oracle-aided batch verification of computation (OBVC) for a function class $$\mathcal{F}$$. This allows a verifier to efficiently verify the correctness of any $$f \in \mathcal{F}$$ evaluated on a batch of $$n$$ instances $$x_1, \ldots, x_n$$, while only making $$\lambda$$ calls to an oracle for $$f$$ (along with $$O(n \lambda)$$ calls to low-complexity helper oracles), for security parameter $$\lambda$$. We obtain the following positive and negative results: - We build OBVC protocols for the class of all functions that admit {\em random-self-reductions}. Some of our protocols rely on homomorphic encryption schemes. - We show that there cannot exist OBVC schemes for the class of all functions mapping $$\lambda$$-bit inputs to $$\lambda$$-bit outputs, for any $$n = \mathsf{poly}(\lambda)$$.more » « less
-
Khurana, Dakshita; Ishai, Yuval; Sahai, Amit; Srinivasan, Akshayaram (, CRYPTO 2023)
-
Bartusek, James; Khurana, Dakshita; Srinivasan, Akshay (, CRYPTO 2023)
-
Ishai, Yuval; Khurana, Dakshita; Sahai, Amit; Srinivasan, Akshayaram (, CRYPTO 2023)
An official website of the United States government

Full Text Available