Active particles, such as swimming bacteria or self-propelled colloids, spontaneously assemble into large-scale dynamic structures. Geometric boundaries often enforce different spatio-temporal patterns compared to unconfined environment and thus provide a platform to control the behavior of active matter. Here, we report collective dynamics of active particles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum consistent with active fluctuations driven by particle-interface collisions. A broken detailed balance confirms the nonequilibrium nature of the shape dynamics. We further find that rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous symmetry breaking and vortex splitting. The droplet acquires motility while the vortex doublet exists. Our findings provide insights into the complex collective behavior of active colloidal suspensions in soft confinement.
This content will become publicly available on December 1, 2025
Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed matter and build complex metamaterials with unique functionalities. Simulations predict a multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-assemble into a hexagonal phase under an in-plane gravitational potential. Under additional gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a crystalline defect and causes a chain reaction of neighboring particle rotations. Our results provide a framework of studying different structures from hard-particle self-assembly and demonstrates the ability to use confinement to induce unusual phases.
more » « less- PAR ID:
- 10502972
- Publisher / Repository:
- Nature Communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Ultrasound directed self-assembly (DSA) allows organizing particles dispersed in a fluid medium into user-specified patterns, driven by the acoustic radiation force associated with a standing ultrasound wave. Accurate control of the spatial organization of the particles in the fluid medium requires accounting for medium viscosity and particle volume fraction. However, existing theories consider an inviscid medium or only determine the effect of viscosity on the magnitude of the acoustic radiation force rather than the locations where particles assemble, which is crucial information to use ultrasound DSA as a fabrication method. We experimentally measure the deviation between locations where spherical microparticles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction. Additionally, we simulate the experiments using coupled-phase theory and the time-averaged acoustic radiation potential, and we derive best-fit equations that predict the deviation between locations where particles assemble during ultrasound DSA when using viscous and inviscid theory. We show that the deviation between locations where particles assemble in viscous and inviscid media first increases and then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity of the mixture. This work has implications for using ultrasound DSA to fabricate, e.g., engineered polymer composite materials that derive their function from accurately organizing a pattern of particles embedded in the polymer matrix.
-
Malleability of metals is an example of how the dynamics of defects like dislocations induced by external stresses alters material properties and enables technological applications. However, these defects move merely to comply with the mechanical forces applied on macroscopic scales, whereas the molecular and atomic building blocks behave like rigid particles. Here, we demonstrate how motions of crystallites and the defects between them can arise within the soft matter medium in an oscillating electric field applied to a chiral liquid crystal with polycrystalline quasi-hexagonal arrangements of self-assembled topological solitons called “torons.” Periodic oscillations of electric field applied perpendicular to the plane of hexagonal lattices prompt repetitive shear-like deformations of the solitons, which synchronize the electrically powered self-shearing directions. The temporal evolution of deformations upon turning voltage on and off is not invariant upon reversal of time, prompting lateral translations of the crystallites of torons within quasi-hexagonal periodically deformed lattices. We probe how these motions depend on voltage and frequency of oscillating field applied in an experimental geometry resembling that of liquid crystal displays. We study the interrelations between synchronized deformations of the soft solitonic particles and their arrays, and the ensuing dynamics and giant number fluctuations mediated by motions of crystallites, five–seven defects pairs, and grain boundaries in the orderly organizations of solitons. We discuss how our findings may lead to technological and fundamental science applications of dynamic self-assemblies of topologically protected but highly deformable particle-like solitons.
-
Abstract The rational design of nanoscopic DNA tiles has yielded highly ordered crystalline matter in 2D and 3D. The most well‐studied 3D tile is the DNA tensegrity triangle, which is known to self‐assemble into macroscopic crystals. However, contemporary rational design parameters for 3D DNA crystals nearly universally invoke integer numbers of DNA helical turns and Watson–Crick (WC) base pairs. In this study, 24‐bp edges are substituted into a previously 21‐bp (two helical turns of DNA) tensegrity triangle motif to explore whether such unconventional motif can self‐assemble into 3D crystals. The use of noncanonical base pairs in the sticky ends results in a cubic arrangement of tensegrity triangles with exceedingly high symmetry, assembling a lattice from winding helical axes and diamond‐like tessellation patterns. Reverting this motif to sticky ends with Watson–Crick pairs results in a trigonal hexagonal arrangement, replicating this diamond arrangement in a hexagonal context. These results showcase that the authors can generate unexpected, highly complex, pathways for materials design by testing modifications to 3D tiles without prior knowledge of the ensuing symmetry. This study expands the rational design toolbox for DNA nanotechnology; and it further illustrates the existence of yet‐unexplored arrangements of crystalline soft matter.
-
One-dimensional lepidocrocite, 1DL, titania, TiO2, is a recently discovered form of this ubiquitous oxide that is of interest in a variety of applications ranging from photocatalysis to water purification, among others. The fundamental building blocks of these materials are snippets (30 nm long) of individual 1DLs that self-assemble into nanobundle, NB, structures. These NBs can then be driven to self-assemble into quasi-two-dimensional, 2D, sheets, films, or free-flowing mesoscopic particles. Here, we use analytical atomic-resolution scanning transmission electron microscopy (STEM) and first-principles density functional theory (DFT) calculations to demonstrate that the arrangement of the neighboring NFs can be altered through ion exchange with Li, Na, and tetramethylammonium hydroxide (TMA) cations. Moreover, using cryogenic electron energy-loss spectroscopy (EELS), we show that the introduction of different ion species results in a change in the local occupancy of the TiO2 t2g and eg orbitals. Both experimental findings are predicted by ground-state energy simulations of two-dimensional lepidocrocite TiO2.more » « less