Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 29, 2025
-
Free, publicly-accessible full text available May 2, 2025
-
Free, publicly-accessible full text available March 18, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available February 1, 2025
-
Exoskeleton robots are capable of safe torque- controlled interactions with a wearer while moving their limbs through pre-defined trajectories. However, affecting and assist- ing the wearer’s movements while incorporating their inputs (effort and movements) effectively during an interaction re- mains an open problem due to the complex and variable nature of human motion. In this paper, we present a control algorithm that leverages task-specific movement behaviors to control robot torques during unstructured interactions by implementing a force field that imposes a desired joint angle coordination behavior. This control law, built by using principal component analysis (PCA), is implemented and tested with the Harmony exoskeleton. We show that the proposed control law is versatile enough to allow for the imposition of different coordination behaviors with varying levels of impedance stiffness. We also test the feasibility of our method for unstructured human-robot interaction. Specifically, we demonstrate that participants in a human-subject experiment are able to effectively perform reaching tasks while the exoskeleton imposes the desired joint coordination under different movement speeds and interaction modes. Survey results further suggest that the proposed control law may offer a reduction in cognitive or motor effort. This control law opens up the possibility of using the exoskeleton for training the participating in accomplishing complex mmore » « less