skip to main content

Search for: All records

Creators/Authors contains: "Schneider, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The geosciences are one of the least diverse disciplines in the United States, despite the field's relevance to livelihoods and local and global economies. Bias, discrimination, and harassment present serious hurdles to diversifying the field. These behaviors persist due to historical structures of exclusion, severe power imbalances, unique challenges associated with geoscientist stereotypes, and a culture of impunity that tolerates exclusionary behaviors and marginalization of scholars from underserved groups. We summarize recent research on exclusionary behaviors that create hostile climates and contribute to persistent low retention of diverse groups in the geosciences and other science, technology, engineering, and mathematics (STEM)more »fields. We then discuss recent initiatives in the US by geoscience professional societies and organizations, including the National Science Foundation-supported ADVANCEGeo Partnership, to improve diversity, equity, and inclusion by improving workplace climate. Social networks and professional organizations can transform scientific culture through providing opportunities for mentorship and community building and counteracting professional isolation that can result from experiencing hostile behaviors, codifying ethical practice, and advocating for policy change. We conclude with a call for a reexamination of current institutional structures, processes, and practices for a transformational and equitable scientific enterprise. To be truly successful, cultural and behavioral changes need to be accompanied by reeducation about the historical political structures of academic institutions to start conversations about the real change that has to happen for a transformational and equitable scientific enterprise.« less
  2. Augmented reality (AR) is a powerful visualization tool to support learning of scientific concepts across learners of various ages. AR can make information otherwise invisible visible in the physical world in real-time. In this study, we are looking at a subset of data from a larger study (N=120), in which participant pairs interacted with an augmented sound producing speaker. We explored the learning behaviors in eight pairs of learners (N=16) who participated in an unstructured physics activity under two conditions: with or without AR. Comparing behaviors between the two experimental conditions, we found that AR affected learning in four differentmore »ways: participants in the AR condition (1) learned more about visual concepts (ex: magnetic field structures) but learned less about nonvisual content (ex: relationship between electricity and physical movement); (2) stopped exploring the system faster than NonAR participants; (3) used less aids in exploration and teaching; and (4) spent less time in teaching their collaborators. We discuss implications of those results for designing collaborative learning activities with augmented reality.« less
  3. Drawing from social capital theory, this study examines the extent to which stable versus new friendship patterns affect low income students’ educational aspirations in urban and rural high schools. Using whole school sociometric data (744 high school students over a two-year period), this study applies a social influence model to determine the effects of stable and newly established friendships on conformity regarding college-going aspirations. Findings indicate that urban students have more new friends and their educational aspirations increased, conforming to those of their newly established friends. In contrast, rural students have more stable friendships than the urban students and theirmore »educational aspirations conformed to those of their stable friends. This work shows that rural students tend not to change their school network size or nominations. However, urban students are more willing to include new students in their school networks which have a positive effect on raising their educational aspirations.« less
  4. This study examines the impact of the college ambition program (CAP) which is designed to increase postsecondary enrollment particularly for low-income and minority high school students. CAP provides course counseling, financial information, college visits, tutoring, and builds social networks with staff and other students. To measure the impact of the intervention, a quasi-experimental design with panel college enrollment survey data complemented by state administrative data were analyzed. Results indicate that the CAP increased 2-year college attendance for low-income and minority students by 9 %. These results underscore the need to differentiate the features of intervention programs and types of channelsmore »in guiding student’s choice of enrolling in a 2-year versus 4-year college.« less
  5. The ability of Additive Manufacturing (AM) processes to ensure delivery of high quality metal-based components is somewhat limited by insufficient inspection capabilities. The inspection of AM parts presents particular challenges due to the design flexibility that the fabrication method affords. The nondestructive evaluation (NDE) methods employed need to be selected based on the material properties, type of possible defects, and geometry of the parts. Electromagnetic method, in particular Eddy Current (EC), is proposed for the inspections. This evaluation of EC inspection considers surface and near-surface defects in a stainless steel (SS) 17 4 PH additively manufactured sample and a SSmore »17 4 PH annealed plates manufactured traditionally (reference sample). The surfaces of the samples were polished using 1 micron polishing Alumina grit to achieve a mirror like surface finish. 1.02 mm (0.04”), 0.508 mm (0.02”) and 0.203 mm (0.008”) deep Electronic Discharge Machining (EDM) notches were created on the polished surface of the samples. Lift off and defect responses for both additive and reference samples were obtained using a VMEC-1 commercial instrument and a 500 kHz absolute probe. The inspection results as well as conductivity assessments for the AM sample in terms of the impedance plane signature were compared to response of similar features in the reference sample. Direct measurement of electromagnetic properties of the AM samples is required for precise inspection of the parts. Results show that quantitative comparison of the AM and traditional materials help for the development of EC technology for inspection of additively manufactured metal parts.« less
  6. A bstract The top quark pair production cross section is measured in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data were collected in a special LHC low-energy and low-intensity run in 2017, and correspond to an integrated luminosity of 302 pb − 1 . The measurement is performed using events with one electron and one muon of opposite charge, and at least two jets. The measured cross section is 60 . 7 ± 5 . 0 (stat) ± 2 . 8 (syst) ± 1 . 1 (lumi) pb. A combination with the result in the single leptonmore »+ jets channel, based on data collected in 2015 at the same center-of-mass energy and corresponding to an integrated luminosity of 27.4 pb − 1 , is then performed. The resulting measured value is 63 . 0 ± 4 . 1 (stat) ± 3 . 0 (syst+lumi) pb, in agreement with the standard model prediction of $$ {66.8}_{-3.1}^{+2.9} $$ 66.8 − 3.1 + 2.9 pb.« less
    Free, publicly-accessible full text available April 1, 2023